Search results for "Godi"

showing 10 items of 88 documents

Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators

2018

This paper deals with collisionless transport equationsin bounded open domains $\Omega \subset \R^{d}$ $(d\geq 2)$ with $\mathcal{C}^{1}$ boundary $\partial \Omega $, orthogonallyinvariant velocity measure $\bm{m}(\d v)$ with support $V\subset \R^{d}$ and stochastic partly diffuse boundary operators $\mathsf{H}$ relating the outgoing andincoming fluxes. Under very general conditions, such equations are governedby stochastic $C_{0}$-semigroups $\left( U_{\mathsf{H}}(t)\right) _{t\geq 0}$ on $%L^{1}(\Omega \times V,\d x \otimes \bm{m}(\d v)).$ We give a general criterion of irreducibility of $%\left( U_{\mathsf{H}}(t)\right) _{t\geq 0}$ and we show that, under very natural assumptions, if an …

PhysicsStochastic semigroupApplied MathematicsKinetic equation010102 general mathematicsConvergence to equilibriumZero (complex analysis)Boundary (topology)01 natural sciencesMeasure (mathematics)010101 applied mathematicsConvergence to equilibrium; Kinetic equation; Stochastic semigroupFlow (mathematics)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Bounded functionCompactness theorem[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Ergodic theory[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]0101 mathematicsInvariant (mathematics)Mathematical PhysicsAnalysisMathematical physicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct

Stochastic Dynamics of Ferroelectric Polarization

2008

This study is addressed to the conceptual and technical problems emerging for ferroelectric systems out of thermodynamic equilibrium. The theoretical setup includes a lattice of interacting cells, each cell obeying regular dynamics determined by Ginzburg-Landau model Hamiltonians whereas relaxation toward minimum energy state is reproduced by thermal environment. Representative examples include polarization response of a single lattice cell, birth of a domain as triggered by the ergodicity breaking, and the effect of nonlocal electroelastic interaction all evidenced combining the Fokker-Planck, imaginary time Schrodinger and symplectic integration techniques.

PhysicsThermodynamic equilibriumErgodicityCondensed Matter PhysicsImaginary timeElectronic Optical and Magnetic MaterialsSchrödinger equationsymbols.namesakeLattice (order)symbolsFokker–Planck equationSymplectic integratorStatistical physicsSymmetry breakingFerroelectrics
researchProduct

Weak mixing implies weak mixing of higher orders along tempered functions

2009

AbstractWe extend the weakly mixing PET (polynomial ergodic theorem) obtained in Bergelson [Weakly mixing PET. Ergod. Th. & Dynam. Sys.7 (1987), 337–349] to much wider families of functions. Besides throwing new light on the question of ‘how much higher-degree mixing is hidden in weak mixing’, the obtained results also show the way to possible new extensions of the polynomial Szemerédi theorem obtained in Bergelson and Leibman [Polynomial extensions of van der Waerden’s and Szemerédi’s theorems. J. Amer. Math. Soc.9 (1996), 725–753].

PolynomialPure mathematicsApplied MathematicsGeneral MathematicsMathematical analysisVan der Waerden's theoremErgodic theoryHardy fieldMixing (physics)MathematicsErgodic Theory and Dynamical Systems
researchProduct

Spectrum of composition operators on S(R) with polynomial symbols

2020

Abstract We study the spectrum of operators in the Schwartz space of rapidly decreasing functions which associate each function with its composition with a polynomial. In the case where this operator is mean ergodic we prove that its spectrum reduces to {0}, while the spectrum of any non mean ergodic composition operator with a polynomial always contains the closed unit disc except perhaps the origin. We obtain a complete description of the spectrum of the composition operator with a quadratic polynomial or a cubic polynomial with positive leading coefficient.

PolynomialPure mathematicsComposition operatorGeneral Mathematics010102 general mathematicsSpectrum (functional analysis)Quadratic function01 natural sciencesOperator (computer programming)Schwartz space0103 physical sciencesErgodic theory010307 mathematical physics0101 mathematicsCubic functionMathematicsAdvances in Mathematics
researchProduct

A criterion for zero averages and full support of ergodic measures

2018

International audience; Consider a homeomorphism $f$ defined on a compact metric space $X$ and a continuous map $\phi\colon X \to \mathbb{R}$. We provide an abstract criterion, called control at any scale with a long sparse tail for a point $x\in X$ and the map $\phi$, which guarantees that any weak* limit measure $\mu$ of the Birkhoff average of Dirac measures $\frac1n\sum_0^{n-1}\delta(f^i(x))$ s such that $\mu$-almost every point $y$ has a dense orbit in $X$ and the Birkhoff average of $\phi$ along the orbit of $y$ is zero.As an illustration of the strength of this criterion, we prove that the diffeomorphisms with nonhyperbolic ergodic measures form a $C^1$-open and dense subset of the s…

Pure mathematics37D25 37D30 37D35 28D99Mathematics::Dynamical SystemsDense setGeneral MathematicsNonhyperbolic measure[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]MSC: 37D25 37D35 37D30 28D99[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Partial hyperbolicity01 natural sciencesMeasure (mathematics)FOS: MathematicsErgodic theoryHomoclinic orbit0101 mathematicsMathematics - Dynamical SystemsMathematicsTransitivity010102 general mathematicsZero (complex analysis)Ergodic measure010101 applied mathematicsCompact spaceHomeomorphism (graph theory)Birkhoff averageOrbit (control theory)Lyapunov exponent
researchProduct

Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence

2020

Let $M$ be a closed 3-manifold which admits an Anosov flow. In this paper we develop a technique for constructing partially hyperbolic representatives in many mapping classes of $M$. We apply this technique both in the setting of geodesic flows on closed hyperbolic surfaces and for Anosov flows which admit transverse tori. We emphasize the similarity of both constructions through the concept of $h$-transversality, a tool which allows us to compose different mapping classes while retaining partial hyperbolicity. In the case of the geodesic flow of a closed hyperbolic surface $S$ we build stably ergodic, partially hyperbolic diffeomorphisms whose mapping classes form a subgroup of the mapping…

Pure mathematics37D30Similarity (geometry)Mathematics::Dynamical SystemsGeodesic[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)dynamical coherenceMSC Primary: 37C15 37D3037C1501 natural sciencessymbols.namesake0103 physical sciencesFOS: MathematicsErgodic theoryMathematics - Dynamical Systems[MATH]Mathematics [math]0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsConjecture010102 general mathematicsSurface (topology)Mathematics::Geometric Topologystable ergodicityMapping class groupFlow (mathematics)Poincaré conjecturesymbols010307 mathematical physicsGeometry and Topologypartially hyperbolic diffeomorphisms
researchProduct

Relations between natural and observable measures

2005

We give a complete description of relations between observable and natural measures in connection with invariance, ergodicity and absolute continuity.

Pure mathematicsApplied MathematicsErgodicityMathematical analysisGeneral Physics and AstronomyNatural (music)Statistical and Nonlinear PhysicsObservableAbsolute continuityDynamical system (definition)Mathematical PhysicsMathematicsConnection (mathematics)Nonlinearity
researchProduct

Mean ergodic composition operators on Banach spaces of holomorphic functions

2016

[EN] Given a symbol cc, i.e., a holomorphic endomorphism of the unit disc, we consider the composition operator C-phi(f) = f circle phi defined on the Banach spaces of holomorphic functions A(D) and H-infinity(D). We obtain different conditions on the symbol phi which characterize when the composition operator is mean ergodic and uniformly mean ergodic in the corresponding spaces. These conditions are related to the asymptotic behavior of the iterates of the symbol. Finally, we deal with some particular case in the setting of weighted Banach spaces of holomorphic functions.

Pure mathematicsEndomorphismComposition operatorBanach spaceHolomorphic functionDisc algebra01 natural sciencesMean ergodic operatorFOS: Mathematics47B33 47A35 46E15Ergodic theoryComplex Variables (math.CV)0101 mathematicsMathematicsMathematics::Functional AnalysisDenjoy Wolff pointMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematicsComposition (combinatorics)Functional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsIterated functionComposition operatorMATEMATICA APLICADAUnit (ring theory)AnalysisJournal of Functional Analysis
researchProduct

Periodic measures and partially hyperbolic homoclinic classes

2019

In this paper, we give a precise meaning to the following fact, and we prove it: $C^1$-open and densely, all the non-hyperbolic ergodic measures generated by a robust cycle are approximated by periodic measures. We apply our technique to the global setting of partially hyperbolic diffeomorphisms with one dimensional center. When both strong stable and unstable foliations are minimal, we get that the closure of the set of ergodic measures is the union of two convex sets corresponding to the two possible $s$-indices; these two convex sets intersect along the closure of the set of non-hyperbolic ergodic measures. That is the case for robustly transitive perturbation of the time one map of a tr…

Pure mathematicsMathematics::Dynamical SystemsGeneral MathematicsClosure (topology)Dynamical Systems (math.DS)01 natural sciencespartial hyperbolicityquasi-hyperbolic stringBlenderFOS: Mathematicsnon-hyperbolic measureErgodic theoryHomoclinic orbitMathematics - Dynamical Systems0101 mathematics[MATH]Mathematics [math]ergodic measureperiodic measureMathematicsfoliationsTransitive relationApplied MathematicsMSC (2010): Primary 37D30 37C40 37C50 37A25 37D25010102 general mathematicsRegular polygonTorusstabilityFlow (mathematics)systemsDiffeomorphismrobust cycleLyapunov exponent
researchProduct

Entropy, Lyapunov exponents, and rigidity of group actions

2018

This text is an expanded series of lecture notes based on a 5-hour course given at the workshop entitled "Workshop for young researchers: Groups acting on manifolds" held in Teres\'opolis, Brazil in June 2016. The course introduced a number of classical tools in smooth ergodic theory -- particularly Lyapunov exponents and metric entropy -- as tools to study rigidity properties of group actions on manifolds. We do not present comprehensive treatment of group actions or general rigidity programs. Rather, we focus on two rigidity results in higher-rank dynamics: the measure rigidity theorem for affine Anosov abelian actions on tori due to A. Katok and R. Spatzier [Ergodic Theory Dynam. Systems…

Pure mathematicsPrimary 22F05 22E40. Secondary 37D25 37C85[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Rigidity (psychology)Dynamical Systems (math.DS)Group Theory (math.GR)Mathematical proof01 natural sciencesMeasure (mathematics)[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Group action0103 physical sciencesFOS: MathematicsErgodic theoryMSC : Primary: 22F05 22E40 ; Secondary: 37D25 37C850101 mathematicsAbelian groupMathematics - Dynamical SystemsEntropy (arrow of time)Mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]010102 general mathematicsLie group010307 mathematical physicsMathematics - Group Theory
researchProduct