Search results for "Godi"
showing 10 items of 88 documents
Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators
2018
This paper deals with collisionless transport equationsin bounded open domains $\Omega \subset \R^{d}$ $(d\geq 2)$ with $\mathcal{C}^{1}$ boundary $\partial \Omega $, orthogonallyinvariant velocity measure $\bm{m}(\d v)$ with support $V\subset \R^{d}$ and stochastic partly diffuse boundary operators $\mathsf{H}$ relating the outgoing andincoming fluxes. Under very general conditions, such equations are governedby stochastic $C_{0}$-semigroups $\left( U_{\mathsf{H}}(t)\right) _{t\geq 0}$ on $%L^{1}(\Omega \times V,\d x \otimes \bm{m}(\d v)).$ We give a general criterion of irreducibility of $%\left( U_{\mathsf{H}}(t)\right) _{t\geq 0}$ and we show that, under very natural assumptions, if an …
Stochastic Dynamics of Ferroelectric Polarization
2008
This study is addressed to the conceptual and technical problems emerging for ferroelectric systems out of thermodynamic equilibrium. The theoretical setup includes a lattice of interacting cells, each cell obeying regular dynamics determined by Ginzburg-Landau model Hamiltonians whereas relaxation toward minimum energy state is reproduced by thermal environment. Representative examples include polarization response of a single lattice cell, birth of a domain as triggered by the ergodicity breaking, and the effect of nonlocal electroelastic interaction all evidenced combining the Fokker-Planck, imaginary time Schrodinger and symplectic integration techniques.
Weak mixing implies weak mixing of higher orders along tempered functions
2009
AbstractWe extend the weakly mixing PET (polynomial ergodic theorem) obtained in Bergelson [Weakly mixing PET. Ergod. Th. & Dynam. Sys.7 (1987), 337–349] to much wider families of functions. Besides throwing new light on the question of ‘how much higher-degree mixing is hidden in weak mixing’, the obtained results also show the way to possible new extensions of the polynomial Szemerédi theorem obtained in Bergelson and Leibman [Polynomial extensions of van der Waerden’s and Szemerédi’s theorems. J. Amer. Math. Soc.9 (1996), 725–753].
Spectrum of composition operators on S(R) with polynomial symbols
2020
Abstract We study the spectrum of operators in the Schwartz space of rapidly decreasing functions which associate each function with its composition with a polynomial. In the case where this operator is mean ergodic we prove that its spectrum reduces to {0}, while the spectrum of any non mean ergodic composition operator with a polynomial always contains the closed unit disc except perhaps the origin. We obtain a complete description of the spectrum of the composition operator with a quadratic polynomial or a cubic polynomial with positive leading coefficient.
A criterion for zero averages and full support of ergodic measures
2018
International audience; Consider a homeomorphism $f$ defined on a compact metric space $X$ and a continuous map $\phi\colon X \to \mathbb{R}$. We provide an abstract criterion, called control at any scale with a long sparse tail for a point $x\in X$ and the map $\phi$, which guarantees that any weak* limit measure $\mu$ of the Birkhoff average of Dirac measures $\frac1n\sum_0^{n-1}\delta(f^i(x))$ s such that $\mu$-almost every point $y$ has a dense orbit in $X$ and the Birkhoff average of $\phi$ along the orbit of $y$ is zero.As an illustration of the strength of this criterion, we prove that the diffeomorphisms with nonhyperbolic ergodic measures form a $C^1$-open and dense subset of the s…
Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence
2020
Let $M$ be a closed 3-manifold which admits an Anosov flow. In this paper we develop a technique for constructing partially hyperbolic representatives in many mapping classes of $M$. We apply this technique both in the setting of geodesic flows on closed hyperbolic surfaces and for Anosov flows which admit transverse tori. We emphasize the similarity of both constructions through the concept of $h$-transversality, a tool which allows us to compose different mapping classes while retaining partial hyperbolicity. In the case of the geodesic flow of a closed hyperbolic surface $S$ we build stably ergodic, partially hyperbolic diffeomorphisms whose mapping classes form a subgroup of the mapping…
Relations between natural and observable measures
2005
We give a complete description of relations between observable and natural measures in connection with invariance, ergodicity and absolute continuity.
Mean ergodic composition operators on Banach spaces of holomorphic functions
2016
[EN] Given a symbol cc, i.e., a holomorphic endomorphism of the unit disc, we consider the composition operator C-phi(f) = f circle phi defined on the Banach spaces of holomorphic functions A(D) and H-infinity(D). We obtain different conditions on the symbol phi which characterize when the composition operator is mean ergodic and uniformly mean ergodic in the corresponding spaces. These conditions are related to the asymptotic behavior of the iterates of the symbol. Finally, we deal with some particular case in the setting of weighted Banach spaces of holomorphic functions.
Periodic measures and partially hyperbolic homoclinic classes
2019
In this paper, we give a precise meaning to the following fact, and we prove it: $C^1$-open and densely, all the non-hyperbolic ergodic measures generated by a robust cycle are approximated by periodic measures. We apply our technique to the global setting of partially hyperbolic diffeomorphisms with one dimensional center. When both strong stable and unstable foliations are minimal, we get that the closure of the set of ergodic measures is the union of two convex sets corresponding to the two possible $s$-indices; these two convex sets intersect along the closure of the set of non-hyperbolic ergodic measures. That is the case for robustly transitive perturbation of the time one map of a tr…
Entropy, Lyapunov exponents, and rigidity of group actions
2018
This text is an expanded series of lecture notes based on a 5-hour course given at the workshop entitled "Workshop for young researchers: Groups acting on manifolds" held in Teres\'opolis, Brazil in June 2016. The course introduced a number of classical tools in smooth ergodic theory -- particularly Lyapunov exponents and metric entropy -- as tools to study rigidity properties of group actions on manifolds. We do not present comprehensive treatment of group actions or general rigidity programs. Rather, we focus on two rigidity results in higher-rank dynamics: the measure rigidity theorem for affine Anosov abelian actions on tori due to A. Katok and R. Spatzier [Ergodic Theory Dynam. Systems…