6533b85afe1ef96bd12b8bd7
RESEARCH PRODUCT
A criterion for zero averages and full support of ergodic measures
Christian BonattiJairo BochiLorenzo J. Díazsubject
Pure mathematics37D25 37D30 37D35 28D99Mathematics::Dynamical SystemsDense setGeneral MathematicsNonhyperbolic measure[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]MSC: 37D25 37D35 37D30 28D99[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Partial hyperbolicity01 natural sciencesMeasure (mathematics)FOS: MathematicsErgodic theoryHomoclinic orbit0101 mathematicsMathematics - Dynamical SystemsMathematicsTransitivity010102 general mathematicsZero (complex analysis)Ergodic measure010101 applied mathematicsCompact spaceHomeomorphism (graph theory)Birkhoff averageOrbit (control theory)Lyapunov exponentdescription
International audience; Consider a homeomorphism $f$ defined on a compact metric space $X$ and a continuous map $\phi\colon X \to \mathbb{R}$. We provide an abstract criterion, called control at any scale with a long sparse tail for a point $x\in X$ and the map $\phi$, which guarantees that any weak* limit measure $\mu$ of the Birkhoff average of Dirac measures $\frac1n\sum_0^{n-1}\delta(f^i(x))$ s such that $\mu$-almost every point $y$ has a dense orbit in $X$ and the Birkhoff average of $\phi$ along the orbit of $y$ is zero.As an illustration of the strength of this criterion, we prove that the diffeomorphisms with nonhyperbolic ergodic measures form a $C^1$-open and dense subset of the set of robustly transitive partially hyperbolic diffeomorphisms with one dimensional nonhyperbolic central direction. We also obtain applications for nonhyperbolic homoclinic classes.
year | journal | country | edition | language |
---|---|---|---|---|
2018-03-01 |