Search results for "Golgi"

showing 10 items of 97 documents

Testis differentiation in the glowworm,Lampyris noctiluca, with special reference to the apical tissue

2001

The gonads of Lampyris noctiluca are sexually undifferentiated during the first larval instars. They consist of many gonadal follicles that include the germ stem cells enclosed by the somatic cells of the follicle wall. Follicle wall cells are more numerous at the follicle apices than at the distal parts, but different cell types cannot be distinguished. In male larvae, the appearance of apical follicle tissue, derived from follicle wall cells, marks the onset of testis differentiation. When maximally expressed, the apical tissue occupies about the upper half of the testis follicles and can be observed in larvae of the fifth and sixth instar. The apical tissue is characterized by its “light…

MaleCell typeSex DifferentiationbiologySomatic cellfungiMetamorphosis BiologicalAnatomyGolgi apparatusbiology.organism_classificationCell biologyColeopteraMicroscopy Electronsymbols.namesakeFollicleLarvaTestisOrganellesymbolsAnimalsLampyris noctilucaAnimal Science and ZoologyStem cellGlowwormDevelopmental BiologyJournal of Morphology
researchProduct

Phylogenetic profiling and cellular analyses of ARL16 reveal roles in traffic of IFT140 and INPP5E

2021

ABSTRACTThe ARF family of regulatory GTPases is ancient, with 16 members predicted to have been present in the last eukaryotic common ancestor. Our phylogenetic profiling of paralogs in diverse species identified four family members whose presence correlates with that of a cilium/flagellum: ARL3, ARL6, ARL13, and ARL16. No prior evidence links ARL16 to cilia or other cell functions, despite its presence throughout eukaryotes. Deletion of ARL16 in MEFs results in decreased ciliogenesis yet increased ciliary length. We also found Arl16 KO in MEFs to alter ciliary protein content, including loss of ARL13B, ARL3, INPP5E, and the IFT-A core component IFT140. Instead, both INPP5E and IFT140 accum…

Protein contentsymbols.namesakeCiliumCiliogenesisINPP5EsymbolsPhylogenetic profilingGTPaseGolgi apparatusBiologyFlagellumCell biology
researchProduct

In vivo Trafficking and Localization of p24 Proteins in Plant Cells

2008

p24 proteins constitute a family of putative cargo receptors that traffic in the early secretory pathway. p24 proteins can be divided into four subfamilies (p23, p24, p25 and p26) by sequence homology. In contrast to mammals and yeast, most plant p24 proteins contain in their cytosolic C-terminus both a dilysine motif in the -3, -4 position and a diaromatic motif in the -7, -8 position. We have previously shown that the cytosolic tail of Arabidopsis p24 proteins has the ability to interact with ARF1 and coatomer (through the dilysine motif) and with COPII subunits (through the diaromatic motif). Here, we establish the localization and trafficking properties of an Arabidopsis thaliana p24 pr…

Recombinant Fusion ProteinsMolecular Sequence DataArabidopsisGolgi ApparatusVacuoleProtein Sorting SignalsBiologyEndoplasmic ReticulumBiochemistrysymbols.namesakeStructural BiologyArabidopsisGeneticsAnimalsHumansProtein IsoformsAmino Acid SequenceMolecular BiologyCOPIISecretory pathwayArabidopsis ProteinsLysineEndoplasmic reticulumMembrane ProteinsCell BiologyCOPIGolgi apparatusbiology.organism_classificationActinsCell biologyDNA-Binding ProteinsProtein TransportBiochemistryCoatomerVacuolessymbolsCOP-Coated VesiclesCarrier ProteinsTranscription FactorsTraffic
researchProduct

Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina

2011

Contains fulltext : 96822.pdf (Publisher’s version ) (Closed access) The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically heterogeneous with at least 11 chromosomal loci assigned to 3 clinical types, USH1-3. We have previously demonstrated that all USH1 and 2 proteins in the eye and the inner ear are organized into protein networks by scaffold proteins. This has contributed essentially to our current understanding of the function of USH proteins and explains why defects in proteins of different families cause very similar phenotypes. We have previously shown that the USH1G protein SANS (scaffold protein containing ankyrin repeat…

Scaffold proteinUsher syndromePhosphodiesterase 4D interacting protein (PDE4DIP)Muscle ProteinsPlasma protein bindingMice0302 clinical medicineYeastsChlorocebus aethiopsNuclear proteinCells CulturedGenetics0303 health scienceseducation.field_of_studyNuclear ProteinsCell biologyCOS CellssymbolsPhotoreceptor Cells VertebrateProtein BindingMicrotubule based transportNerve Tissue ProteinsBiologyModels BiologicalRetina03 medical and health sciencessymbols.namesakemedicineAnimalsHumanseducationMolecular BiologyAdaptor Proteins Signal Transducing030304 developmental biologyCell BiologyGlycostation disorders [IGMD 4]Golgi apparatusmedicine.diseaseMacaca mulattaMice Inbred C57BLCytoskeletal ProteinsPhotoreceptor cell functionMyomegalinGenetics and epigenetic pathways of disease Functional Neurogenomics [NCMLS 6]CattleAnkyrin repeatCiliary baseIntracellular transport030217 neurology & neurosurgerySensorineuronal degeneration
researchProduct

Endothelial Nitric Oxide Synthase Regulates T Cell Receptor Signaling at the Immunological Synapse

2006

The role of nitric oxide (NO) in T cells remains controversial, and the origin and localization of endogenous NO and whether it regulates lymphocyte activation are unclear. We show here that, within minutes of binding to antigen, T cells produce NO via endothelial nitric oxide synthase (eNOS). This process required increased intracellular Ca2+ and phosphoinositide3-kinase activity. By using an eNOS-green fluorescent fusion protein and fluorescent probes to detect NO, we show that eNOS translocates with the Golgi apparatus to the immune synapse of T helper cells engaged with antigen-presenting cells (APC), where it was fully activated. Overexpression of eNOS prevented the central coalescence…

Interleukin 2CD3 ComplexNitric Oxide Synthase Type IIIT-LymphocytesImmunologyReceptors Antigen T-CellAntigen-Presenting CellsGolgi ApparatusBiologyLymphocyte ActivationNitric OxideNitric oxideImmunological synapseInterferon-gammaMicePhosphatidylinositol 3-Kinaseschemistry.chemical_compoundAntigenmedicineAnimalsHumansImmunology and AllergyCytotoxic T cellAntigensMOLIMMUNOAntigen-presenting cellNitric Oxide Synthase Type IIIMice Mutant StrainsCell biologyInfectious DiseaseschemistryInterleukin-2CalciumSignal transductionSignal Transductionmedicine.drugImmunity
researchProduct

Protein Kinase C μ Is Regulated by the Multifunctional Chaperon Protein p32

2000

We identified the multifunctional chaperon protein p32 as a protein kinase C (PKC)-binding protein interacting with PKCalpha, PKCzeta, PKCdelta, and PKC mu. We have analyzed the interaction of PKC mu with p32 in detail, and we show here in vivo association of PKC mu, as revealed from yeast two-hybrid analysis, precipitation assays using glutathione S-transferase fusion proteins, and reciprocal coimmunoprecipitation. In SKW 6.4 cells, PKC mu is constitutively associated with p32 at mitochondrial membranes, evident from colocalization with cytochrome c. p32 interacts with PKC mu in a compartment-specific manner, as it can be coimmunoprecipitated mainly from the particulate and not from the so…

ImmunoprecipitationRecombinant Fusion ProteinsGolgi ApparatusSaccharomyces cerevisiaeSpodopteraMitogen-activated protein kinase kinaseBiologyTransfectionBiochemistryCell LineMitochondrial ProteinsAnimalsHumansCloning MolecularKinase activityMolecular BiologyProtein Kinase CProtein kinase CGlutathione TransferaseB-LymphocytesBinding SitesMembrane GlycoproteinsKinaseAutophosphorylationJNK Mitogen-Activated Protein KinasesCell BiologyFusion proteinMitochondriaReceptors ComplementCell biologybody regionsHyaluronan ReceptorsProtein kinase domainBiochemistryMitogen-Activated Protein KinasesCarrier ProteinsMolecular ChaperonesProtein BindingJournal of Biological Chemistry
researchProduct

A new insight into the three-dimensional architecture of the Golgi complex: Characterization of unusual structures in epididymal principal cells.

2017

Principal epididymal cells have one of the largest and more developed Golgi complex of mammalian cells. In the present study, we have used this cell as model for the study of the three-dimensional architecture of the Golgi complex of highly secretory and endocytic cells. Electron tomography demonstrated the presence in this cell type of some unknown or very unusual Golgi structures such as branched cisternae, pocket-like cisternal invaginations or tubular connections. In addition, we have used this methodology and immunoelectron microscopy to analyze the close relationship between this organelle and both the endoplasmic reticulum and microtubules, and to describe in detail how these element…

Male0301 basic medicineEndocytic cycleGolgi Apparatuslcsh:MedicineEndoplasmic ReticulumMicrotubulesDiagnostic RadiologyRats Sprague-Dawley0302 clinical medicineMedicine and Health Scienceslcsh:ScienceTomographyCytoskeletonEpididymisSecretory PathwayMultidisciplinaryChemistryRadiology and ImagingCell biologyChemistryCell ProcessesPhysical SciencessymbolsCellular Structures and OrganellesAnatomyGenital AnatomyResearch ArticleChemical ElementsCell typeImaging TechniquesImmunoelectron microscopyResearch and Analysis Methods03 medical and health sciencessymbols.namesakeDiagnostic MedicineMicrotubuleOrganelleAnimalsVesiclesEndoplasmic reticulumlcsh:RReproductive SystemBiology and Life SciencesCell BiologyGolgi apparatusMicroscopy Electron030104 developmental biologyElectron tomographylcsh:Q030217 neurology & neurosurgeryPLoS ONE
researchProduct

The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium.

2010

Photoreceptors are complex ciliated sensory neurons. The basal body and periciliary ridge of photoreceptors function in association with the Golgi complex to regulate the export of proteins from the inner segment to the outer segment sensory axoneme. Here, we show that the retinitis pigmentosa protein RP2, which is a GTPase activating protein (GAP) for Arl3, localizes to the ciliary apparatus, namely the basal body and the associated centriole at the base of the photoreceptor cilium. Targeting to the ciliary base was dependent on N-terminal myristoylation. RP2 also localized to the Golgi and periciliary ridge of photoreceptors, which suggested a role for RP2 in regulating vesicle traffic an…

CentriolePhotoreceptor Connecting CiliumGolgi ApparatusBiologysymbols.namesakeMiceIntraflagellar transportGTP-Binding ProteinsGeneticsBasal bodyAnimalsHumansKIF3APhotoreceptor CellsCiliaEye ProteinsTransport VesiclesMolecular BiologyGenetics (clinical)Cells CulturedCentriolesADP-Ribosylation FactorsCiliumCiliary BodyIntracellular Signaling Peptides and ProteinsMembrane ProteinsBiological TransportGeneral MedicineGolgi apparatusCell biologysymbolssense organsCiliary baseRetinitis PigmentosaHuman molecular genetics
researchProduct

Affinity proteomics identifies novel functional modules related to adhesion GPCRs.

2019

Adhesion G protein-coupled receptors (ADGRs) have recently become a target of intense research. Their unique protein structure, which consists of a G protein-coupled receptor combined with long adhesive extracellular domains, suggests a dual role in cell signaling and adhesion. Despite considerable progress in the understanding of ADGR signaling over the past years, the knowledge about ADGR protein networks is still limited. For most receptors, only a few interaction partners are known thus far. We aimed to identify novel ADGR-interacting partners to shed light on cellular protein networks that rely on ADGR function. For this, we applied affinity proteomics, utilizing tandem affinity purifi…

0301 basic medicineScaffold proteinProteomicsProteomicsGeneral Biochemistry Genetics and Molecular Biology570 Life sciencesReceptors G-Protein-Coupled03 medical and health sciencessymbols.namesake0302 clinical medicineHistory and Philosophy of ScienceHumansNuclear proteinTranscription factorG protein-coupled receptorChemistryGeneral NeuroscienceEndoplasmic reticulumWnt signaling pathwayGolgi apparatusCell biology030104 developmental biologyHEK293 Cellssymbols030217 neurology & neurosurgery570 BiowissenschaftenHeLa CellsSignal TransductionSubcellular FractionsAnnals of the New York Academy of SciencesReferences
researchProduct

Efectos de la exposición crónica al etanol sobre el tráfico intracelular y citoesqueleto como factores implicados en la migración neuronal

2013

El consumo de etanol durante la gestación puede inducir una serie de alteraciones graves en el desarrollo del feto, la manifestación más extrema da lugar al Síndrome Alcohólico Fetal (SAF). La exposición prenatal al alcohol es la causa conocida y, además evitable, más importante de retraso mental en el mundo occidental. Además de déficits cognitivos, los niños con SAF presentan múltiples anomalías estructurales en el sistema nervioso central, como reducción de la masa cerebral, y a nivel celular, daños en la migración neuronal, en el proceso de formación de espinas dendríticas y establecimiento de sinapsis. En la actualidad, los mecanismos moleculares implicados en la teratogénesis inducida…

Central Nervous Systemaparato de Golgietanolespinas dendríticasneuronasneurons:CIENCIAS DE LA VIDA::Neurociencias [UNESCO]migración neuronalMAP2Fetal Alcoholic SyndromeRho GTPasasactinaRho GTPasesendocitosis:CIENCIAS MÉDICAS::Toxicología [UNESCO]endocytosismicrotúbuloneuronal migrationUNESCO::CIENCIAS MÉDICAS::Toxicologíatráfico intracelularUNESCO::CIENCIAS DE LA VIDA::Biología celular::Cultivo celularcytoskeletondendritic spinesSAFSíndrome Alcohólico Fetalcitoesqueleto:CIENCIAS DE LA VIDA::Biología celular::Cultivo celular [UNESCO]Golgi apparatusUNESCO::CIENCIAS DE LA VIDA::Neurocienciasethanolintracellular trafficactinSistema Nervioso Centralmicrotubule
researchProduct