6533b7d0fe1ef96bd125ae67

RESEARCH PRODUCT

Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina

Hannie KremerDilek KilicTina MärkerKatharina BaußNora OverlackUwe WolfrumErwin Van Wijk

subject

Scaffold proteinUsher syndromePhosphodiesterase 4D interacting protein (PDE4DIP)Muscle ProteinsPlasma protein bindingMice0302 clinical medicineYeastsChlorocebus aethiopsNuclear proteinCells CulturedGenetics0303 health scienceseducation.field_of_studyNuclear ProteinsCell biologyCOS CellssymbolsPhotoreceptor Cells VertebrateProtein BindingMicrotubule based transportNerve Tissue ProteinsBiologyModels BiologicalRetina03 medical and health sciencessymbols.namesakemedicineAnimalsHumanseducationMolecular BiologyAdaptor Proteins Signal Transducing030304 developmental biologyCell BiologyGlycostation disorders [IGMD 4]Golgi apparatusmedicine.diseaseMacaca mulattaMice Inbred C57BLCytoskeletal ProteinsPhotoreceptor cell functionMyomegalinGenetics and epigenetic pathways of disease Functional Neurogenomics [NCMLS 6]CattleAnkyrin repeatCiliary baseIntracellular transport030217 neurology & neurosurgerySensorineuronal degeneration

description

Contains fulltext : 96822.pdf (Publisher’s version ) (Closed access) The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically heterogeneous with at least 11 chromosomal loci assigned to 3 clinical types, USH1-3. We have previously demonstrated that all USH1 and 2 proteins in the eye and the inner ear are organized into protein networks by scaffold proteins. This has contributed essentially to our current understanding of the function of USH proteins and explains why defects in proteins of different families cause very similar phenotypes. We have previously shown that the USH1G protein SANS (scaffold protein containing ankyrin repeats and SAM domain) contributes to the periciliary protein network in retinal photoreceptor cells. This study aimed to further elucidate the role of SANS by identifying novel interaction partners. In yeast two-hybrid screens of retinal cDNA libraries we identified 30 novel putative interacting proteins binding to the central domain of SANS (CENT). We confirmed the direct binding of the phosphodiesterase 4D interacting protein (PDE4DIP), a Golgi associated protein synonymously named myomegalin, to the CENT domain of SANS by independent assays. Correlative immunohistochemical and electron microscopic analyses showed a co-localization of SANS and myomegalin in mammalian photoreceptor cells in close association with microtubules. Based on the present results we propose a role of the SANS-myomegalin complex in microtubule-dependent inner segment cargo transport towards the ciliary base of photoreceptor cells.

10.1016/j.bbamcr.2011.05.015https://doi.org/10.1016/j.bbamcr.2011.05.015