Search results for "Graphics"
showing 10 items of 1223 documents
Extracting Deformation-Aware Local Features by Learning to Deform
2021
Despite the advances in extracting local features achieved by handcrafted and learning-based descriptors, they are still limited by the lack of invariance to non-rigid transformations. In this paper, we present a new approach to compute features from still images that are robust to non-rigid deformations to circumvent the problem of matching deformable surfaces and objects. Our deformation-aware local descriptor, named DEAL, leverages a polar sampling and a spatial transformer warping to provide invariance to rotation, scale, and image deformations. We train the model architecture end-to-end by applying isometric non-rigid deformations to objects in a simulated environment as guidance to pr…
Deep Non-Line-of-Sight Reconstruction
2020
The recent years have seen a surge of interest in methods for imaging beyond the direct line of sight. The most prominent techniques rely on time-resolved optical impulse responses, obtained by illuminating a diffuse wall with an ultrashort light pulse and observing multi-bounce indirect reflections with an ultrafast time-resolved imager. Reconstruction of geometry from such data, however, is a complex non-linear inverse problem that comes with substantial computational demands. In this paper, we employ convolutional feed-forward networks for solving the reconstruction problem efficiently while maintaining good reconstruction quality. Specifically, we devise a tailored autoencoder architect…
Multi-GPU Accelerated Multi-Spin Monte Carlo Simulations of the 2D Ising Model
2010
A Modern Graphics Processing unit (GPU) is able to perform massively parallel scientific computations at low cost. We extend our implementation of the checkerboard algorithm for the two-dimensional Ising model [T. Preis et al., Journal of Chemical Physics 228 (2009) 4468–4477] in order to overcome the memory limitations of a single GPU which enables us to simulate significantly larger systems. Using multi-spin coding techniques, we are able to accelerate simulations on a single GPU by factors up to 35 compared to an optimized single Central Processor Unit (CPU) core implementation which employs multi-spin coding. By combining the Compute Unified Device Architecture (CUDA) with the Message P…
Statistical Performance Analysis of a Fast Super-Resolution Technique Using Noisy Translations.
2014
It is well known that the registration process is a key step for super-resolution reconstruction. In this work, we propose to use a piezoelectric system that is easily adaptable on all microscopes and telescopes for controlling accurately their motion (down to nanometers) and therefore acquiring multiple images of the same scene at different controlled positions. Then a fast super-resolution algorithm \cite{eh01} can be used for efficient super-resolution reconstruction. In this case, the optimal use of $r^2$ images for a resolution enhancement factor $r$ is generally not enough to obtain satisfying results due to the random inaccuracy of the positioning system. Thus we propose to take seve…
PanoRoom: From the Sphere to the 3D Layout
2018
We propose a novel FCN able to work with omnidirectional images that outputs accurate probability maps representing the main structure of indoor scenes, which is able to generalize on different data. Our approach handles occlusions and recovers complex shaped rooms more faithful to the actual shape of the real scenes. We outperform the state of the art not only in accuracy of the 3D models but also in speed.
Creating and Reenacting Controllable 3D Humans with Differentiable Rendering
2022
This paper proposes a new end-to-end neural rendering architecture to transfer appearance and reenact human actors. Our method leverages a carefully designed graph convolutional network (GCN) to model the human body manifold structure, jointly with differentiable rendering, to synthesize new videos of people in different contexts from where they were initially recorded. Unlike recent appearance transferring methods, our approach can reconstruct a fully controllable 3D texture-mapped model of a person, while taking into account the manifold structure from body shape and texture appearance in the view synthesis. Specifically, our approach models mesh deformations with a three-stage GCN traine…
Visual Parameter Selection for Spatial Blind Source Separation.
2022
Analysis of spatial multivariate data, i.e., measurements at irregularly-spaced locations, is a challenging topic in visualization and statistics alike. Such data are inteGral to many domains, e.g., indicators of valuable minerals are measured for mine prospecting. Popular analysis methods, like PCA, often by design do not account for the spatial nature of the data. Thus they, together with their spatial variants, must be employed very carefully. Clearly, it is preferable to use methods that were specifically designed for such data, like spatial blind source separation (SBSS). However, SBSS requires two tuning parameters, which are themselves complex spatial objects. Setting these parameter…
Can visualization alleviate dichotomous thinking? Effects of visual representations on the cliff effect
2021
Common reporting styles for statistical results in scientific articles, such as $p$ p -values and confidence intervals (CI), have been reported to be prone to dichotomous interpretations, especially with respect to the null hypothesis significance testing framework. For example when the $p$ p -value is small enough or the CIs of the mean effects of a studied drug and a placebo are not overlapping, scientists tend to claim significant differences while often disregarding the magnitudes and absolute differences in the effect sizes. This type of reasoning has been shown to be potentially harmful to science. Techniques relying on the visual estimation of the strength of evidence have been recom…
Human, Technologies and Quality of Education: Proceedings of Scientific Papers, 2019
2019
"You helped me out of that darkness" Children as dialogical partners in the collaborative post-family therapy research interview.
2021
Applying Dialogical Methods for Investigations of Happening of Change (DIHC), this study investigated how children who had been diagnosed with an oppositional defiant or conduct disorder participated in a collaborative post‐therapy research interview and talked about their experiences of family therapy. The results showed that the children participated as dialogical partners talking in genuine, emotional, and reflective ways. Encountered as full‐membership partners, the children also co‐constructed meanings for their sensitive experiences. However, their verbal initiatives and responses appeared in very brief moments and could easily have been missed. The collaborative post‐therapy intervie…