Search results for "Gravity"

showing 10 items of 537 documents

Tau neutrinos in the next decade: from GeV to EeV

2022

Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.

HIGH-ENERGY NEUTRINOSMAGNETIC-MOMENTAstrophysics and AstronomyNuclear and High Energy PhysicsRADIO PULSESPhysics::Instrumentation and Detectorstau neutrinosFOS: Physical sciencesCHERENKOV LIGHT YIELDGeV530High Energy Physics - Experimenttau neutrino theorySubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)neutrino experimentsSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Particle Physics - PhenomenologyAIR-SHOWERSLEPTON FLAVORastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)hep-exPhysicshep-phtau neutrinos; neutrino experiments; tau neutrino theorylandscapeCOSMIC-RAYSHigh Energy Physics - PhenomenologyQUANTUM-GRAVITYCHARGED-PARTICLES[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]beam dumpPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentLORENTZ VIOLATION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaParticle Physics - Experiment
researchProduct

Absorption by black hole remnants in metric-affine gravity

2019

Using numerical methods, we investigate the absorption properties of a family of nonsingular solutions {which arise in different metric-affine theories, such as quadratic and Born-Infeld gravity.} These solutions continuously interpolate between Schwarzschild black holes and naked solitons with wormhole topology. The resulting spectrum is characterized by a series of quasibound states excitations, associated with the existence of a stable photonsphere.

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGravity (chemistry)Series (mathematics)010308 nuclear & particles physicsSpectrum (functional analysis)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum Cosmology0103 physical sciencesMetric (mathematics)Affine transformationWormhole010306 general physicsAstrophysics - High Energy Astrophysical PhenomenaSchwarzschild radiusMathematical physics
researchProduct

On unification and nucleon decay in supersymmetric grand unified theories based on SU(5)

2006

9 pages, 4 figures.-- ISI Article Identifier: 000247170700016.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ph/0610034

High Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics::PhenomenologyFOS: Physical sciencesFísicaHigh Energy Physics::ExperimentSupergravity Unification (SU)GUT; Beyond Standard Model; Nucleon decay.Proton-decayFlipped SU(5)High Energy Physics - Experiment
researchProduct

Probing Planck scale physics with IceCube

2005

Neutrino oscillations can be affected by decoherence induced e.g. by Planck scale suppressed interactions with the space-time foam predicted in some approaches to quantum gravity. We study the prospects for observing such effects at IceCube, using the likely flux of TeV antineutrinos from the Cygnus spiral arm. We formulate the statistical analysis for evaluating the sensitivity to quantum decoherence in the presence of the background from atmospheric neutrinos, as well as from plausible cosmic neutrino sources. We demonstrate that IceCube will improve the sensitivity to decoherence effects of ${\cal O}(E^2/M_{\rm Pl})$ by 17 orders of magnitude over present limits and, moreover, that it ca…

High Energy Physics - TheoryAstrofísicaNuclear and High Energy PhysicsParticle physicsField theory (Physics)Quantum decoherenceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics7. Clean energy01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesTeoria quànticaNeutrinsSensitivity (control systems)Neutrinos010306 general physicsNeutrino oscillationPhysicsCOSMIC cancer database010308 nuclear & particles physicsAstrophysics (astro-ph)Teoria de camps (Física)High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Orders of magnitude (time)13. Climate actionQuantum theoryQuantum gravityNeutrinoPhysical Review D
researchProduct

Entropy Production during Asymptotically Safe Inflation

2011

The Asymptotic Safety scenario predicts that the deep ultraviolet of Quantum Einstein Gravity is governed by a nontrivial renormalization group fixed point. Analyzing its implications for cosmology using renormalization group improved Einstein equations we find that it can give rise to a phase of inflationary expansion in the early Universe. Inflation is a pure quantum effect here and requires no inflaton field. It is driven by the cosmological constant and ends automatically when the renormalization group evolution has reduced the vacuum energy to the level of the matter energy density. The quantum gravity effects also provide a natural mechanism for the generation of entropy. It could eas…

High Energy Physics - TheoryAsymptotic safety in quantum gravityGeneral Physics and AstronomyFOS: Physical scienceslcsh:AstrophysicsCosmological constantAstrophysics::Cosmology and Extragalactic AstrophysicsTheoretical physicsGeneral Relativity and Quantum CosmologyVacuum energylcsh:QB460-466inflationlcsh:ScienceEntropy (arrow of time)PhysicsEntropy productionquantum gravity; Asymptotic Safety; inflationInflatonRenormalization grouplcsh:QC1-999High Energy Physics - Theory (hep-th)quantum gravityAsymptotic SafetyQuantum gravitylcsh:Qlcsh:PhysicsEntropy; Volume 13; Issue 1; Pages: 274-292
researchProduct

From Big Bang to Asymptotic de Sitter: Complete Cosmologies in a Quantum Gravity Framework

2005

Using the Einstein-Hilbert approximation of asymptotically safe quantum gravity we present a consistent renormalization group based framework for the inclusion of quantum gravitational effects into the cosmological field equations. Relating the renormalization group scale to cosmological time via a dynamical cutoff identification this framework applies to all stages of the cosmological evolution. The very early universe is found to contain a period of ``oscillatory inflation'' with an infinite sequence of time intervals during which the expansion alternates between acceleration and deceleration. For asymptotically late times we identify a mechanism which prevents the universe from leaving t…

High Energy Physics - TheoryBig BangInflation (cosmology)Physicsmedia_common.quotation_subjectAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsRenormalization groupAstrophysicsUniverseGravitationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)De Sitter universeQuantum gravityQuantumMathematical physicsmedia_common
researchProduct

Caustics for spherical waves

2016

We study the development of caustics in shift-symmetric scalar field theories by focusing on simple waves with an $SO(p)$-symmetry in an arbitrary number of space dimensions. We show that the pure Galileon, the DBI-Galileon, and the extreme-relativistic Galileon naturally emerge as the unique set of caustic-free theories, highlighting a link between the caustic-free condition for simple $SO(p)$-waves and the existence of either a global Galilean symmetry or a global (extreme-)relativistic Galilean symmetry.

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical Phenomenagr-qcFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsSpace (mathematics)01 natural sciencesGeneral Relativity and Quantum CosmologyGalileanPhysics Particles & FieldsGRAVITYSimple (abstract algebra)SYSTEMS0103 physical sciencesSpherical waveFIELD-EQUATIONSSPACESINGULARITY010306 general physicsLink (knot theory)Mathematical physicsPhysicsScience & Technology010308 nuclear & particles physicsPhysicshep-thSymmetry (physics)Classical mechanicsHigh Energy Physics - Theory (hep-th)Physical Sciencesastro-ph.CODevelopment (differential geometry)Scalar fieldTENSORSCALARAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmology of hybrid metric-Palatini f(X)-gravity

2012

A new class of modified theories of gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini was proposed recently. The dynamically equivalent scalar-tensor representation of the model was also formulated, and it was shown that even if the scalar field is very light, the theory passes the Solar System observational constraints. Therefore the model predicts the existence of a long-range scalar field, modifying the cosmological and galactic dynamics. An explicit model that passes the local tests and leads to cosmic acceleration was also obtained. In the present work, it is shown that the theory can be also formulated in ter…

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitymedia_common.quotation_subjectScalar (mathematics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesCosmologyGeneral Relativity and Quantum CosmologyGravitationGeneral Relativity and Quantum Cosmology0103 physical sciencesdark energy theory010306 general physicsmodified gravityRicci curvatureMathematical physicsmedia_commonPhysics010308 nuclear & particles physicsAstronomy and AstrophysicsUniverseHigh Energy Physics - Theory (hep-th)Dark energyScalar fieldAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Astrophysical constraints on extended gravity models

2015

We investigate the propagation of gravitational waves in the context of fourth order gravity nonminimally coupled to a massive scalar field. Using the damping of the orbital period of coalescing stellar binary systems, we impose constraints on the free parameters of extended gravity models. In particular, we find that the variation of the orbital period is a function of three mass scales which depend on the free parameters of the model under consideration; we can constrain these mass scales from current observational data.

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)Wave propagationFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Cosmological constantGeneral Relativity and Quantum CosmologyHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyTheory of relativityPulsarBinary starRELATIVITYphysics of the early universemodified gravityCOSMOLOGICAL CONSTANTANISOTROPYPhysicsGravitational waveAstronomy and AstrophysicsSUPERNOVAEPULSARgravitational waves / theoryLAMBDASupernovaStarsDERIVATIVE QUANTUM-GRAVITY; COSMOLOGICAL CONSTANT; LAGRANGIANS; RELATIVITY; SUPERNOVAE; ANISOTROPY; LAMBDA; PULSARClassical mechanicsHigh Energy Physics - Theory (hep-th)LAGRANGIANSDERIVATIVE QUANTUM-GRAVITYAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The 1-loop effective potential for the Standard Model in curved spacetime

2018

The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of $\beta$-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which i…

High Energy Physics - TheoryDe Sitter spaceVacuum stateUNIVERSEfield theories in higher dimensionskosmologia01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics - Phenomenology (hep-ph)INFLATIONRADIATIVE-CORRECTIONSGauge theoryELECTROWEAK VACUUMMathematical physicsPhysics02 Physical SciencesPhysicshep-thhiukkasfysiikan standardimalliRENORMALIZATION-GROUP EQUATIONShep-phSPONTANEOUS SYMMETRY-BREAKINGNuclear & Particles PhysicsHigh Energy Physics - PhenomenologyHIGGS MASSPhysical SciencesGAUGE-THEORIESMathematics::Differential GeometryNuclear and High Energy Physicsgr-qcFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Curvatureclassical theories of gravityGeneral Relativity and Quantum Cosmology0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityfield theories in lower dimensions010306 general physics01 Mathematical SciencesInflation (cosmology)Science & TechnologySpacetimeSTABILITYta114010308 nuclear & particles physicsgravitaatioLoop (topology)High Energy Physics - Theory (hep-th)INTERACTING SCALAR FIELDlcsh:QC770-798Perturbation theory (quantum mechanics)Journal of High Energy Physics
researchProduct