Search results for "Greenhouse gas"

showing 10 items of 259 documents

High-resolution spectroscopy and analysis of the V2 + V3 combination band of SF6 in a supersonic jet expansion

2013

International audience; Sulphur hexafluoride is a very strong greenhouse gas whose concentration is increasing in the atmosphere. It is detected through infrared absorption spectroscopy in the strong ν3 fundamental region. Due to the existence of low-lying vibrational states of this molecule, however, many hot bands arise at room temperature and those are still not known. We present here a contribution to the elucidation of this hot band structure, by analysing the ν2 + ν3 combination band. We use a supersonic jet expansion high-resolution spectrum at a rotational temperature of ca. 25 K that was recorded thanks to the Jet-AILES setup at the Source Optimisée de Lumière d'Energie Intermédiai…

010504 meteorology & atmospheric sciencessupersonic jet expansionBiophysicsInfrared spectroscopy7. Clean energy01 natural sciencesHot bandlaw.inventionsymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]law0103 physical sciencesSupersonic speedPhysical and Theoretical ChemistrySpectroscopy[ PHYS.PHYS.PHYS-ATM-PH ] Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus]Molecular BiologyComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]010304 chemical physicssulphur hexafluorideChemistry[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus]Rotational temperatureRotational–vibrational spectroscopyCondensed Matter PhysicsSynchrotron[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]13. Climate actiongreenhouse gassymbolsinfrared absorption[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsHamiltonian (quantum mechanics)tensorial formalism
researchProduct

Applicability and consequences of the integration of alternative models for CO<sub>2</sub> transfer velocity into a process-based lake mo…

2019

Abstract. Freshwater lakes are important in carbon cycling, especially in the boreal zone where many lakes are supersaturated with the greenhouse gas carbon dioxide (CO2) and emit it to the atmosphere, thus ventilating carbon originally fixed by the terrestrial system. The exchange of CO2 between water and the atmosphere is commonly estimated using simple wind-based parameterizations or models of gas transfer velocity (k). More complex surface renewal models, however, have been shown to yield more correct estimates of k in comparison with direct CO2 flux measurements. We incorporated four gas exchange models with different complexity into a vertical process-based physico-biochemical lake mo…

0106 biological sciences010504 meteorology & atmospheric sciences010604 marine biology & hydrobiologyEddy covariancechemistry.chemical_elementAtmospheric sciences01 natural sciences6. Clean waterCarbon cycleAtmospherechemistry.chemical_compoundWater columnchemistryTotal inorganic carbon13. Climate actionGreenhouse gasCarbon dioxideEnvironmental scienceCarbonEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesEarth-Surface ProcessesBiogeosciences
researchProduct

Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemonia viri…

2019

Published version, available at: https://doi.org/10.1371/journal.pone.0210358 Ocean acidification threatens to disrupt interactions between organisms throughout marine ecosystems. The diversity of reef-building organisms decreases as seawater CO2 increases along natural gradients, yet soft-bodied animals, such as sea anemones, are often resilient. We sequenced the polyA-enriched transcriptome of adult sea anemone Anemonia viridis and its dinoflagellate symbiont sampled along a natural CO2 gradient in Italy to assess stress levels in these organisms. We found that about 1.4% of the anemone transcripts, but only ~0.5% of the Symbiodinium sp. transcripts were differentially expressed. Processe…

0106 biological sciences0301 basic medicineAtmospheric ScienceMolecular biologyMarine and Aquatic SciencesGene ExpressionRetrotransposonSea anemone01 natural sciencesAnemoniaSequencing techniquesMobile Genetic ElementsMultidisciplinarybiologyQREukaryotaOcean acidificationAnemoneRNA sequencingGenomicsChemistryRetrotransposonsPhysical SciencesMedicineTranscriptome AnalysisResearch ArticleScienceZoology010603 evolutionary biology03 medical and health sciencesGreenhouse GasesCnidariaGenetic ElementsSea WaterGeneticsVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470Environmental ChemistryAnimalsMarine ecosystemBiology and life sciencesEcology and Environmental SciencesDinoflagellateChemical CompoundsOrganismsTransposable ElementsCorrectionAquatic EnvironmentsComputational BiologyCarbon Dioxidebiology.organism_classificationGenome AnalysisMarine EnvironmentsInvertebratesVDP::Mathematics and natural science: 400::Basic biosciences: 470Research and analysis methods:Genetikk og genomikk: 474 VDP::Marinbiologi:497 VDP::Økologi:488 [VDP]030104 developmental biologySea AnemonesMolecular biology techniquesAtmospheric ChemistryEarth SciencesSeawater
researchProduct

Nitrous oxide effluxes from plants as a potentially important source to the atmosphere

2018

The global budget for nitrous oxide (N2 O), an important greenhouse gas and probably dominant ozone-depleting substance emitted in the 21st century, is far from being fully understood. Cycling of N2 O in terrestrial ecosystems has traditionally exclusively focused on gas exchange between the soil surface (nitrification-denitrification processes) and the atmosphere. Terrestrial vegetation has not been considered in the global budget so far, even though plants are known to release N2 O. Here, we report the N2 O emission rates of 32 plant species from 22 different families measured under controlled laboratory conditions. Furthermore, the first isotopocule values (δ15 N, δ18 O and δ15 Nsp ) of …

0106 biological sciences0301 basic medicineLightNitrogenPhysiologyNitrous OxidePlant Science01 natural sciencesAtmosphere03 medical and health scienceschemistry.chemical_compoundSpecies SpecificityEcosystemAtmosphereStable isotope ratioTemperatureVegetationNitrous oxideCarbon DioxidePlants030104 developmental biologychemistryIsotope LabelingGreenhouse gasEnvironmental chemistryEnvironmental scienceTerrestrial ecosystemCycling010606 plant biology & botanyNew Phytologist
researchProduct

Towards food, feed and energy crops mitigating climate change

2011

Agriculture is an important source of anthropogenic emissions of the greenhouse gases (GHG), methane (CH 4 ) and nitrous oxide (N 2 O), and crops can affect the microbial processes controlling these emissions in many ways. Here, we summarize the current knowledge of plant–microbe interactions in relation to the CH 4 and N 2 O budgets and show how this is promoting new generations of crop cultivars that have the potential to mitigate GHG emissions for future agricultural use. The possibility of breeding low GHG-emitting cultivars is a paradigm shift towards sustainable agriculture that balances climate change and food and bioenergy security.

0106 biological sciencesCrops AgriculturalConservation of Natural ResourcesClimate ChangePlant ExudatesNitrous OxideClimate changePlant ScienceBiology7. Clean energy01 natural scienceskyoto protocolnitrogenCarbon CycleSoilBioenergyemission in agricultureSustainable agriculture[SDV.BV]Life Sciences [q-bio]/Vegetal BiologySoil Microbiology2. Zero hungerFood securityBacteriabusiness.industryAgroforestrymicrobial processmethanen2o04 agricultural and veterinary sciences15. Life on landNitrogen Cycleghg emissionEnergy crop13. Climate actionAgriculturegreenhouse gasGreenhouse gasWetlandsSustainabilityRhizosphere040103 agronomy & agriculture0401 agriculture forestry and fisheriesbusiness010606 plant biology & botany
researchProduct

A new methodology for organic soils in national greenhouse gas inventories: Data synthesis, derivation and application

2020

Abstract Drained organic soils are large sources of anthropogenic greenhouse gases (GHG) in many European and Asian countries. Therefore, these soils urgently need to be considered and adequately accounted for when attempting to decrease emissions from the Agriculture and Land Use, Land Use Change and Forestry (LULUCF) sectors. Here, we describe the methodology, data and results of the German approach for measurement, reporting and verification (MRV) of anthropogenic GHG emissions from drained organic soils and outline ways forward towards tracking drainage and rewetting. The methodology was developed for and is currently applied in the German GHG inventory under the United Nations Framewor…

0106 biological sciencesEcologyLand useSoil organic matterEnvironmental engineeringGeneral Decision Sciences010501 environmental sciences010603 evolutionary biology01 natural sciencesUnited Nations Framework Convention on Climate ChangeGreenhouse gasDissolved organic carbonEnvironmental scienceLand use land-use change and forestryKyoto ProtocolDrainageEcology Evolution Behavior and Systematics0105 earth and related environmental sciences
researchProduct

Aeration control in membrane bioreactor for sustainable environmental footprint

2020

In this study different scenarios were scrutinized to minimize the energy consumption of a membrane bioreactor system for wastewater treatment. Open-loop and closed-loop scenarios were investigated by two-step cascade control strategies based on dissolved oxygen, ammonia and nitrite concentrations. An integrated MBR model which includes also the greenhouse gas formation/emission processes was applied. A substantial energy consumption reduction was obtained for the closed-loop scenarios (32% for Scenario 1 and 82% for Scenario 2). The air flow control based on both ammonia and nitrite concentrations within the aerobic reactor (Scenario 2) provided excellent results in terms of reduction of o…

0106 biological sciencesEnvironmental EngineeringAeration-based control strategyBioengineeringWastewater010501 environmental sciencesMembrane bioreactorWaste Disposal Fluid01 natural sciencesGreenhouse Gaseschemistry.chemical_compoundBioreactorsAmmonia010608 biotechnologyBioreactorWaste WaterNitriteWaste Management and DisposalOperating cost0105 earth and related environmental sciencesProportion-integration controlSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentEnvironmental engineeringGeneral MedicineEnergy consumptionOxygenchemistryGreenhouse gasMembrane bioreactorEnvironmental scienceSewage treatmentAerationBioresource Technology
researchProduct

A plant-wide modelling comparison between membrane bioreactors and conventional activated sludge

2020

Abstract A comprehensive plant-wide mathematical modelling comparison between conventional activated sludge (CAS) and Membrane bioreactor (MBR) systems is presented. The main aim of this study is to highlight the key features of CAS and MBR in order to provide a guide for an effective plant operation. A scenario analysis was performed to investigate the influence on direct and indirect greenhouse gas (GHG) emissions and operating costs of (i) the composition of inflow wastewater (scenario 1), (ii) operating conditions (scenario 2) and (iii) oxygen transfer efficiency (scenario 3). Scenarios show higher indirect GHG emissions for MBR than CAS, which result is related to the higher energy con…

0106 biological sciencesEnvironmental EngineeringBioengineeringWastewater010501 environmental sciencesMembrane bioreactor01 natural sciencesWaste Disposal FluidGreenhouse GasesBioreactors010608 biotechnologyBioreactorWaste WaterScenario analysisWaste Management and Disposal0105 earth and related environmental sciencesWWTPEnergy demandMathematical modellingSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentEnvironmental engineeringMembranes ArtificialGeneral MedicineEnergy consumptionActivated sludgeWastewaterPlant-wide modelGreenhouse gasSimple modelEnvironmental scienceWaste disposal
researchProduct

Spatiotemporal patterns in methane flux and gas transfer velocity at low wind speeds: Implications for upscaling studies on small lakes

2016

Lakes contribute significantly to the global natural emissions of methane (CH4) and carbon dioxide. However, to accurately incorporate them into the continental carbon balance more detailed surveys of lacustrine greenhouse gas emissions are needed, especially in respect to spatiotemporal variability and to how this affects the upscaling of results. We investigated CH4 flux from a small, wind-shielded lake during 10 field trips over a 14 month period. We show that floating chambers may be used to calibrate the relationship between gas transfer velocity (k) and wind speed at 10 m height (U10) to the local system, in order to obtain more accurate estimates of diffusive CH4 flux than by applyin…

0106 biological sciencesHydrologyAtmospheric Science010504 meteorology & atmospheric sciencesEcology010604 marine biology & hydrobiologyPaleontologySoil ScienceFluxForestryAquatic ScienceAtmospheric sciences01 natural sciencesMethaneWind speedAtmospherechemistry.chemical_compoundchemistryGreenhouse gasCarbon dioxideEnvironmental scienceSpatial variabilityDiffusion (business)0105 earth and related environmental sciencesWater Science and TechnologyJournal of Geophysical Research: Biogeosciences
researchProduct

Integrated membrane bioreactors modelling: A review on new comprehensive modelling framework

2021

International audience; Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas…

0106 biological sciencesPerformance indicatorsComputer scienceWastewater treatment010501 environmental sciencesWastewaterMembrane bioreactor01 natural sciences7. Clean energyWaste Disposal FluidBioreactorsTheoreticalModels11. SustainabilityWaste Management and Disposalmedia_common[SDE.IE]Environmental Sciences/Environmental EngineeringWaste DisposalGeneral MedicineEnergy consumptionBiological processes High environmental sustainability Modelling framework Performance indicators Bioreactors Membranes Artificial Models Theoretical Waste Water Greenhouse Gases Waste Disposal Fluid6. Clean waterBiological processes; High environmental sustainability; Modelling framework; Performance indicators; Bioreactors; Membranes Artificial; Models Theoretical; Waste Water; Greenhouse Gases; Waste Disposal FluidInternational watersArtificialFluidBiotechnologyEnvironmental Engineeringmedia_common.quotation_subjectModelling frameworkBioengineering12. Responsible consumptionGreenhouse Gases010608 biotechnologyGénie chimiqueQuality (business)Waste Water[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringGénie des procédés0105 earth and related environmental sciencesMembranesBiological processesSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentMembrane foulingMembranes ArtificialModels Theoretical[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation13. Climate actionGreenhouse gasSustainabilityHigh environmental sustainabilityBiochemical engineeringPerformance indicator
researchProduct