Search results for "HADRONS"

showing 10 items of 502 documents

Weak decays of heavy hadrons into dynamically generated resonances

2016

In this paper, we present a review of recent works on weak decay of heavy mesons and baryons with two mesons, or a meson and a baryon, interacting strongly in the final state. The aim is to learn about the interaction of hadrons and how some particular resonances are produced in the reactions. It is shown that these reactions have peculiar features and act as filters for some quantum numbers which allow to identify easily some resonances and learn about their nature. The combination of basic elements of the weak interaction with the framework of the chiral unitary approach allow for an interpretation of results of many reactions and add a novel information to different aspects of the hadron…

QuarkNuclear and High Energy PhysicsParticle physicsFinal state interactionNuclear TheoryMesonNuclear TheoryHadronBaryon weak decaysFOS: Physical sciencesGeneral Physics and AstronomyHadronsLambda01 natural sciencesHeavy mesonNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesMesons (Nuclear physics)Mesons (Física nuclear)Nuclear Experiment010306 general physicsWave functionWeak interactions (Nuclear physics)PhysicsMesonic and baryonic resonances010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyInteraccions febles (Física nuclear)State (functional analysis)BaryonHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentProduction (computer science)International Journal of Modern Physics E
researchProduct

Charm and hidden charm scalar mesons in the nuclear medium

2009

We study the renormalization of the properties of low-lying charm and hidden charm scalar mesons in a nuclear medium, concretely of the D-s0(2317) and the theoretical hidden charm state X(3700). We find that for the D-s0(2317), with negligible width at zero density, the width becomes about 100 MeV at normal nuclear-matter density, while in the case of the X(3700) the width becomes as large as 200 MeV. We discuss the origin of this new width and trace it to reactions occurring in the nucleus, while offering a guideline for future experiments testing these changes. We also show how those medium modifications will bring valuable information on the nature of the scalar resonances and the mechan…

Nuclear and High Energy PhysicsParticle physicsTrace (linear algebra)Nuclear TheoryMesonNuclear TheoryScalar (mathematics)FOS: Physical sciencesCHIRAL-SYMMETRY RESTORATIONNuclear Theory (nucl-th)RenormalizationUNITARY APPROACHCharm (quantum number)Nuclear ExperimentNN INTERACTIONPhysicsHEAVY MESONSZero (complex analysis)FísicaLOCAL SYMMETRYMULTIQUARK HADRONSNuclear matterGAUGE BOSONPHI-PHOTOPRODUCTIONHigh Energy Physics::ExperimentPI-PI INTERACTIONNucleonVECTOR-MESONSThe European Physical Journal A
researchProduct

Updated precision measurement of the average lifetime of B hadrons

1996

The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.}

Nuclear and High Energy PhysicsParticle physicsElectron–positron annihilationHadron01 natural sciencesb taggingPartícules (Física nuclear)030218 nuclear medicine & medical imagingNuclear physics03 medical and health sciencesinclusive reconstruction0302 clinical medicine0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentDELPHIPhysics010308 nuclear & particles physicsLARGE ELECTRON POSITRON COLLIDERCharged particleB hadrons lifetimeDELPHI; B hadrons lifetime; inclusive reconstruction; b taggingPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::ExperimentFísica nuclearAstrophysics::Earth and Planetary AstrophysicsImpact parameterParticle Physics - Experiment
researchProduct

Underlying-event properties in pp and p–Pb collisions at √sNN = 5.02 TeV

2023

We report about the properties of the underlying event measured with ALICE at the LHC in pp and p–Pb collisions at √sNN = 5.02 TeV. The event activity, quantified by charged-particle number and summed-pT densities, is measured as a function of the leading-particle transverse momentum (ptrigT). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different pT thresholds (0.15, 0.5 and 1 GeV/c) at mid-pseudorapidity (|η| 10 GeV/c, whereas for lower ptrigT values the event activity is slightly higher in p–Pb than in pp collisions. The measurements are compared with predictions …

quark-gluon plasmaproperties of hadronskvarkki-gluoniplasmahadronit
researchProduct

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

2018

We report the measured transverse momentum ($p_{\rm T}$) spectra of primary charged particles from pp, p-Pb and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV in the kinematic range of $0.15<p_{\rm T}<50$ GeV/$c$ and $|\eta|< 0.8$. A significant improvement of systematic uncertainties motivated the reanalysis of data in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, as well as in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, which is also presented. Spectra from Pb-Pb collisions are presented in nine centrality intervals and are compared to a reference spectrum from pp collisions scaled by the number of binary nucleon-nucleon collisions. For cent…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]heavy ion: scatteringHadronmomentum [up]binaryMULTIPLICITY DEPENDENCEPartonheavy ion: scattering ; transverse momentum: momentum spectrum ; quantum chromodynamics: matter ; parton: energy loss ; momentum: high ; up: momentum ; pp: scattering ; nucleus ; charged particle ; suppression ; energy dependence ; impact parameter ; transport theory ; nucleon nucleon ; CERN LHC Coll ; kinematics ; binarymomentum spectrum [transverse momentum]hiukkasfysiikkaKAONnucl-ex01 natural sciences7. Clean energy2760 GeV-cms/nucleonHigh Energy Physics - Experimenttransverse momentum: momentum spectrumHeavy Ion Experiments; Heavy-ion collision; Nuclear and high energy physicsHigh Energy Physics - Experiment (hep-ex)quark gluon plasma Heavy Ion Experiments Heavy-ion collisionnucleon nucleonHeavy-ion collisionhigh [momentum]PIONscattering [p p]transport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)impact parameterNuclear ExperimentNuclear ExperimentQCD matterparticle production and suppressionPhysicsPhysicsHADRONSheavy ion experiments heavy ion collision particle production and suppressionHeavy Ion Experiments; Heavy-ion collisionVDP::Kjerne- og elementærpartikkelfysikk: 431suppressionCENTRALITY DEPENDENCEcharged particleCharged particleMULTIPLICITY DEPENDENCE; CENTRALITY DEPENDENCE; HADRONS; SUPPRESSION; MODEL; KAON; PIONquark gluon plasma:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431kinematicsHeavy Ion ExperimentImpact parameterParticle Physics - ExperimentHeavy Ion Experiments Heavy-ion collision Nuclear and High Energy Physics.Nuclear and High Energy Physicsp p: scatteringnucleon nucleon: scatteringenergy loss [parton]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesenergy dependenceNuclear physicsPionHeavy Ion Experiments[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [heavy ion]0103 physical sciencesmatter [quantum chromodynamics]lcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Nuclear Physics - Experiment5020 GeV-cms/nucleonup: momentum010306 general physicsp nucleus: scatteringquantum chromodynamics: matterta114010308 nuclear & particles physicshep-exnucleus:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Nuclear and high energy physicsheavy ion collisionMODEL* Automatic Keywords *13. Climate actionmomentum: highQuark–gluon plasmalcsh:QC770-798High Energy Physics::Experimentparton: energy lossEnergy (signal processing)experimental results
researchProduct

Double Polarization Observables in Pentaquark Photoproduction

2019

We investigate the properties of the hidden charm pentaquark-like resonances first observed by LHCb in 2015, by measuring the polarization transfer KLL between the incident photon and the outgoing proton in the exclusive photoproduction of J/psi near threshold. We present a first estimate of the sensitivity of this observable to the pentaquark photocouplings and hadronic branching ratios, and extend our predictions to the case of initial state helicity correlation ALL, using a polarized target. These results serve as a benchmark for the SBS experiment at Jefferson Lab, which proposes to measure for the first time the helicity correlations ALL and KLL in J/psi exclusive photoproduction, in o…

Particle physicsFísica-Modelos matemáticosPhotonHadronpentaquarksFOS: Physical sciences01 natural sciencesexotic hadronsHigh Energy Physics - ExperimentPolarized targetHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPhoton polarizationNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsexotic hadrons; pentaquarks; hadron spectroscopy010308 nuclear & particles physicshadron spectroscopyObservablePolarization (waves)HelicityPentaquarkHigh Energy Physics - PhenomenologyHigh Energy Physics::Experiment
researchProduct

Complete Measurement of the Λ Electromagnetic Form Factors.

2019

The exclusive process e+e−→ΛΛ¯, with Λ→pπ− and Λ¯→p¯π+, has been studied at s=2.396 GeV for measurement of the timelike Λ electric and magnetic form factors, GE and GM. A data sample, corresponding to an integrated luminosity of 66.9 pb−1, was collected with the BESIII detector for this purpose. A multidimensional analysis with a complete decomposition of the spin structure of the reaction enables a determination of the modulus of the ratio R=|GE/GM| and, for the first time for any baryon, the relative phase ΔΦ=ΦE−ΦM. The resulting values are R=0.96±0.14(stat)±0.02(syst) and ΔΦ=37°±12°(stat)±6°(syst), respectively. These are obtained using the recently established and most precise value of …

Multi-dimensional analysisElectron–positron annihilationRelative phaseHadronAnalytical chemistryGeneral Physics and AstronomyHadronsOBSERVABLESLambdaBaryon01 natural sciencesArticleNOHigh Energy Physics - ExperimentSubatomär fysikGermanium compoundsElectromagnetic form factorsSubatomic Physics0103 physical sciencesMagnetic form factorTwo-photon exchangePiddc:530010306 general physicsAsymmetry parameterProton Scattering; Nucleons; HydrogenPhysicsIntegrated luminosityDecompositionPhysicsHigh Energy Physics::PhenomenologyApproximation theoryPhysics multidisciplinaryPhotonHigh Energy Physics - Experiment; High Energy Physics - ExperimentBaryonLuminanceSpin structuresHigh Energy Physics::ExperimentMagnetic form factorMulti dimensional analysisBar (unit)Physical review letters
researchProduct

A study of the material in the ATLAS inner detector using secondary hadronic interactions

2011

The ATLAS inner detector is used to reconstruct secondary vertices due to hadronic interactions of primary collision products, so probing the location and amount of material in the inner region of ATLAS. Data collected in 7 TeV pp collisions at the LHC, with a minimum bias trigger, are used for comparisons with simulated events. The reconstructed secondary vertices have spatial resolutions ranging from ~ 200μm to 1 mm. The overall material description in the simulation is validated to within an experimental uncertainty of about 7%. This will lead to a better understanding of the reconstruction of various objects such as tracks, leptons, jets, and missing transverse momentum.

PhotonPhysics::Instrumentation and Detectorsdetector modelling and simulations i (interaction of radiation with matter; interaction; large detector systems for particle and astroparticle physics; of photons with matter; interaction of hadrons with matter; etc); particle tracking detectors (solid-state detectors); si microstrip and pad detectors01 natural sciencesparticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]of photons with matter interaction of hadrons with matter etc)InstrumentationGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Detectors de radiacióMathematical PhysicsPhysicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)Large Hadron ColliderSettore FIS/01 - Fisica SperimentaleDetectorVERTEX DETECTORSSi microstrip and pad detectorsTransition radiation detectorinteraction of hadrons with matterExperimental uncertainty analysismedicine.anatomical_structureParticle tracking detectors (Solid-state detectors)Física nuclearParticle Physics - Experimentof photons with matterParticle physicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Large detector systems for particle and astroparticle physicsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]Detector modelling and simulations I (interaction of radiation with matter interactionDetector modelling and simulations I (interaction of radiation with matterddc:500.2530Detector Modelling and SimulationsInteraction of photons with matterNuclear physicsAtlas (anatomy)0103 physical sciencesmedicineddc:610010306 general physicsetc)Astroparticle physicsParticle Tracking DetectorsScience & Technology010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsLarge Detector Systemsdetector modelling and simulations IFísicaCol·lisions (Física nuclear)Experimental High Energy PhysicsHigh Energy Physics::ExperimentSi Microstrip and Pad DetectorsLepton
researchProduct

Resonances in QCD

2015

We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with ${\it up}$, ${\it down}$ and ${\it strange}$ quark content were considered. For heavy-light and heavy-heavy meson systems, those with ${\it charm}$ quarks were the focus. This docum…

PhysicsQuarkQuantum chromodynamicsNuclear and High Energy PhysicsStrange quarkParticle physicsMeson010308 nuclear & particles physicsHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyHadron01 natural sciencesCharm quarkBaryonHigh Energy Physics - Phenomenology0103 physical sciencesHadrons; Mini review; QCD; Resonancesddc:530High Energy Physics::ExperimentCharm (quantum number)Nuclear Experiment010306 general physicsNuclear Physics A
researchProduct

Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment

2014

XENON is a direct detection dark matter project, consisting of a time projection chamber (TPC) that uses xenon in double phase as a sensitive detection medium. XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, is one of the most sensitive experiments of its field. During the operation of XENON100, the design and construction of the next generation detector (of ton-scale mass) of the XENON project, XENON1T, is taking place. XENON1T is being installed at LNGS as well. It has the goal to reduce the background by two orders of magnitude compared to XENON100, aiming at a sensitivity of $2 \cdot 10^{-47} \mathrm{cm}^{\mathrm{2}}$ for a WIMP mass of 50 GeV/c$^{2}$. With…

axionsPhysics - Instrumentation and Detectors[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cherenkov and transition radiationCherenkov detectorPhysics::Instrumentation and DetectorsDark matterDetector modelling and simulations I (interaction of radiation with matterchemistry.chemical_elementFOS: Physical sciences01 natural scienceslaw.inventionNuclear physicsXenonWIMPlawCherenkov and transition radiation Detector modelling and simulations Cherenkov detectors Dark Matter detectorsetc.)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Dark Matter detectors (WIMPsMathematical PhysicsCherenkov radiationetc)PhysicsMuonTime projection chamber010308 nuclear & particles physicsCherenkov detectorsDetectorAstrophysics::Instrumentation and Methods for Astrophysicsinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)Cherenkov and transition radiation; Cherenkov detectors; Dark Matter detectors (WIMPs axions etc.); Detector modelling and simulations I (interaction of radiation with matter; interaction of hadrons with matter etc); interaction of photons with matter[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]interaction of hadrons with matterchemistryHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsJOURNAL OF INSTRUMENTATION
researchProduct