Search results for "HEMA"
showing 10 items of 32275 documents
On Whitham and Related Equations
2017
The aim of this paper is to study, via theoretical analysis and numerical simulations, the dynamics of Whitham and related equations. In particular, we establish rigorous bounds between solutions of the Whitham and Korteweg–de Vries equations and provide some insights into the dynamics of the Whitham equation in different regimes, some of them being outside the range of validity of the Whitham equation as a water waves model.
Linear Approximation Property, Minkowski Dimension, and Quasiconformal Spheres
1990
Complex Analysis and Dynamical Systems VII
2017
L∞-variational problems associated to measurable Finsler structures
2016
Abstract We study L ∞ -variational problems associated to measurable Finsler structures in Euclidean spaces. We obtain existence and uniqueness results for the absolute minimizers.
On the local negativity of surfaces with numerically trivial canonical class
2018
Codimension growth of central polynomials of Lie algebras
2019
Abstract Let L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic zero and let I be the T-ideal of polynomial identities of the adjoint representation of L. We prove that the number of multilinear central polynomials in n variables, linearly independent modulo I, grows exponentially like ( dim L ) n {(\dim L)^{n}} .
Defect zero characters predicted by local structure
2017
Let $G$ be a finite group and let $p$ be a prime. Assume that there exists a prime $q$ dividing $|G|$ which does not divide the order of any $p$-local subgroup of $G$. If $G$ is $p$-solvable or $q$ divides $p-1$, then $G$ has a $p$-block of defect zero. The case $q=2$ is a well-known result by Brauer and Fowler.
Jakimovski–Leviatan operators of Kantorovich type involving multiple Appell polynomials
2019
Abstract The purpose of the present paper is to obtain the degree of approximation in terms of a Lipschitz type maximal function for the Kantorovich type modification of Jakimovski–Leviatan operators based on multiple Appell polynomials. Also, we study the rate of approximation of these operators in a weighted space of polynomial growth and for functions having a derivative of bounded variation. A Voronvskaja type theorem is obtained. Further, we illustrate the convergence of these operators for certain functions through tables and figures using the Maple algorithm and, by a numerical example, we show that our Kantorovich type operator involving multiple Appell polynomials yields a better r…
The uniform convergence of a double sequence of functions at a point and Korovkin-type approximation theorems
2020
Abstract In this paper, we introduce an interesting kind of convergence for a double sequence called the uniform convergence at a point. We give an example and demonstrate a Korovkin-type approximation theorem for a double sequence of functions using the uniform convergence at a point. Then we show that our result is stronger than the Korovkin theorem given by Volkov and present several graphs. Finally, in the last section, we compute the rate of convergence.
Partially hyperbolic diffeomorphisms with a uniformly compact center foliation: the quotient dynamics
2016
We show that a partially hyperbolic$C^{1}$-diffeomorphism$f:M\rightarrow M$with a uniformly compact$f$-invariant center foliation${\mathcal{F}}^{c}$is dynamically coherent. Further, the induced homeomorphism$F:M/{\mathcal{F}}^{c}\rightarrow M/{\mathcal{F}}^{c}$on the quotient space of the center foliation has the shadowing property, i.e. for every${\it\epsilon}>0$there exists${\it\delta}>0$such that every${\it\delta}$-pseudo-orbit of center leaves is${\it\epsilon}$-shadowed by an orbit of center leaves. Although the shadowing orbit is not necessarily unique, we prove the density of periodic center leaves inside the chain recurrent set of the quotient dynamics. Other interesting proper…