Search results for "HILIC"

showing 10 items of 745 documents

Catechol-Initiated Polyethers: Multifunctional Hydrophilic Ligands for PEGylation and Functionalization of Metal Oxide Nanoparticles

2012

Bifunctional CA-PEG (catechol-poly(ethylene glycol)) and multifunctional CA-PEG-PGA/PEVGE (poly(glycidyl amine)/poly(ethylene glycol vinyl glycidyl ether)) ligands for the functionalization and solubilization of nanoparticles are introduced. Tunable polymers with polydispersities1.25 and molecular weights in the range 500-7700 g mol(-1) containing a catechol moiety for conjugation to metal oxide nanoparticles were prepared. The functional PEG ligands were synthesized starting from the acetonide-protected catechol initiator 2,2-dimethyl-1,3-benzodioxole-5-propanol (CA-OH) for oxyanionic polymerization. CA-OH was used both for homopolymerization of ethylene oxide (EO) as well as copolymerizat…

CatecholPolymers and PlasticsEthylene oxideChemistryCatecholstechnology industry and agricultureMetal NanoparticlesBioengineeringmacromolecular substancesLigandsPolyethylene GlycolsBiomaterialschemistry.chemical_compoundPolymerizationPolymer chemistryMaterials ChemistryCopolymerPEGylationEpoxy CompoundsMoietyBifunctionalHydrophobic and Hydrophilic InteractionsEthylene glycolBiomacromolecules
researchProduct

Lipid Bilayer Interactions of Peptidic Supramolecular Polymers and Their Impact on Membrane Permeability and Stability.

2020

The synthesis and physicochemical characterization of supramolecular polymers with tunable assembly profiles offer exciting opportunities, involving the development of new biomedical carriers. Because synthetic nanocarriers aim to transport substances across or toward cellular membranes, we evaluated the interactions of amphiphilic peptide-based supramolecular polymers with lipid bilayers. Here, we focused on nanorod-like supramolecular polymers, obtained from two C3-symmetric dendritic peptide amphiphiles with alternating Phe/His sequences, equipped with a peripheral tetraethylene glycol dendron (C3-PH) or charged ethylenediamine end groups (C3-PH+). Triggered by pH changes, these amphiphi…

Cell Membrane PermeabilityMembrane permeabilityCell SurvivalMacromolecular SubstancesPolymersSurface PropertiesLipid BilayersSupramolecular chemistryBiochemistryAmphiphileHumansParticle SizeLipid bilayerCells CulturedCell Proliferationchemistry.chemical_classificationNanotubesMolecular StructureChemistryBilayerHydrogen-Ion ConcentrationSupramolecular polymersMembraneHEK293 CellsBiophysicsDrug carrierPeptidesHydrophobic and Hydrophilic InteractionsBiochemistry
researchProduct

Cell Culture Characterization of Prooxidative Chain-Transfer Agents as Novel Cytostatic Drugs

2021

Prooxidative therapy is a well-established concept in infectiology and parasitology, in which prooxidative drugs like artemisinin and metronidazole play a pivotal clinical role. Theoretical considerations and earlier studies have indicated that prooxidative therapy might also represent a promising strategy in oncology. Here, we have investigated a novel class of prooxidative drugs, namely chain-transfer agents, as cytostatic agents in a series of human tumor cell lines in vitro. We have found that different chain-transfer agents of the lipophilic thiol class (like dodecane-1-thiol) elicited half-maximal effective concentrations in the low micromolar range in SY5Y cells (human neuroblastoma)…

Cell Survivallipophilic thiolCellular differentiationPharmaceutical ScienceOrganic chemistryfree radical chain reactionAntineoplastic AgentschemotherapyAntioxidantsArticleAnalytical Chemistryradical propagationHeLaQD241-441Coordination ComplexesNeuroblastomaDrug DiscoverymedicineTumor Cells CulturedHumansDoxorubicinSulfhydryl CompoundsPhysical and Theoretical ChemistryCytotoxicityoxidative cell deathCell Proliferationprooxidative drugbiologyChemistryHEK 293 cellslipid peroxidationbiology.organism_classificationmedicine.diseaseCytostatic Agentschain-transfer agentIn vitroChemistry (miscellaneous)Cell cultureCancer researchMolecular MedicineNitrogen OxidesDrug Screening Assays Antitumormedicine.drugrate-limiting stepMolecules
researchProduct

Pyridinedicarboxylates, the first mechanism-derived inhibitors for prolyl 4-hydroxylase, selectively suppress cellular hydroxyprolyl biosynthesis. De…

1987

Two pyridinedicarboxylates, predicted [Hanauske-Abel (1983) M.D.-Ph.D. Thesis, Philipps Universität Marburg] and later found to be potent reversible inhibitors of purified prolyl 4-hydroxylase [Majaama, Hanauske-Abel, Günzler & Kivirikko (1984) Eur. J. Biochem. 138, 239-245] were investigated with respect to their effect on hydroxyprolyl biosynthesis in the fibroblast/collagen and the macrophage/Clq systems, and the effect was compared with that of the iron chelator 2,2′-dipyridyl, the compound usually employed to inhibit cellular hydroxyprolyl formation. Only the enzyme-mechanism-derived pyridinedicarboxylates were highly selective inhibitors, and only they lacked overt cytotoxicity. M…

Cell typeCell SurvivalComplement Activating EnzymesGuinea PigsProcollagen-Proline DioxygenaseBiologyBiochemistrychemistry.chemical_compoundBiosynthesisComplement C1In vivomedicineAnimalsHumansSecretionPicolinic AcidsFibroblastCytotoxicityMolecular BiologyCells CulturedDose-Response Relationship DrugComplement C1qEndoplasmic reticulumCell BiologyFibroblastsHydroxyprolineMicroscopy Electronmedicine.anatomical_structureBiochemistrychemistryLipophilicityCollagenResearch ArticleBiochemical Journal
researchProduct

Histopathology and Classification of Renal Cell Tumors (Adenomas, Oncocytomas and Carcinomas)

1986

The term renal cell tumors (adenomas and carcinomas) subsumes the tumors deriving from the uriniferous tubule epithelium of the kidney. Precise analysis shows that the renal cell tumors display different cell types which build up the individual tumor alone or in combination with each other. Three categories of basic elements are distinguished in the characterization of renal cell tumors: Cytological elements = tumor cell types: Clear, chromophobe, chromophilic (basophilic, eosinophilic), oncocytic, spindle-shaped/pleomorphic. Histological elements = growth patterns: Compact, acinar (nest-like), tubulopapillary (tubular, papillary), cystic. Cytological grading of malignancy: G I, G II, G III…

Cell typePathologymedicine.medical_specialtyKidneyCell BiologyChromophobe cellBiologyurologic and male genital diseasesMalignancymedicine.diseasePathology and Forensic MedicineBasophilicmedicine.anatomical_structuremedicineAtypiaNuclear atypiaGrading (tumors)Pathology - Research and Practice
researchProduct

Nanoscale Mapping of the Physical Surface Properties of Human Buccal Cells and Changes Induced by Saliva

2019

International audience; The mucosal pellicle, also called salivary pellicle, is a thin biological layer made of salivary and epithelial constituents, lining oral mucosae. It contributes to their protection against microbiological, chemical, or mechanical insults. Pellicle formation depends on the cells’ surface properties, and in turn the pellicle deeply modifies such properties. It has been reported that the expression of the transmembrane mucin MUC1 in oral epithelial cells improves the formation of the mucosal pellicle. Here, we describe an approach combining classical and functionalized tip atomic force microscopy and scanning microwave microscopy to characterize how MUC1 induces change…

Cell typeSalivaSurface Properties[SDV]Life Sciences [q-bio]Cellhuman buccal cells02 engineering and technology010402 general chemistry01 natural sciences[SPI]Engineering Sciences [physics]MicroscopyElectrochemistrymedicineElectric ImpedanceHumansNanotechnologyGeneral Materials ScienceSpectroscopyMUC1hydrophobicity[PHYS]Physics [physics]MouthsalivaChemistryMucinSurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsTransmembrane protein0104 chemical sciencesScanning Microwave Microscopy SMMmedicine.anatomical_structureChemical force microscopydielectric propertiesBiophysicsChemical Force Microscopyfuntionalization0210 nano-technologyHydrophobic and Hydrophilic Interactions
researchProduct

Synthesis, biological evaluation, and: In silico studies of novel chalcone: In pyrazoline-based 1,3,5-triazines as potential anticancer agents

2020

A novel series of triazin-chalcones (7,8)a-g and triazin-N-(3,5-dichlorophenyl)pyrazolines (9,10)a-g were synthesized and evaluated for their anticancer activity against nine different cancer strains. Triazine ketones 5 and 6 were synthesized from the cyanuric chloride 1 by using stepwise nucleophilic substitution of the chlorine atom. These ketones were subsequently subjected to a Claisen-Schmidt condensation reaction with aromatic aldehydes affording chalcones (7,8)a-g. Then, N-(3,5-dichlorophenyl)pyrazolines (9,10)a-g were obtained by cyclocondensation reactions of the respective chalcones (7,8)a-g with 3,5-dichlorophenylhydrazine. Among all the evaluated compounds, chalcones 7d,g and 8g…

ChalconeGeneral Chemical EngineeringCyanuric chloridePyrazolineTriazine derivatives01 natural sciencesClaisen Schmidt condensation03 medical and health scienceschemistry.chemical_compoundNucleophilic substitutionNucleophilic substitution030304 developmental biologyTriazinechemistry.chemical_classification0303 health sciences010405 organic chemistryLigandBiological evaluationGeneral ChemistryCondensation reactionCombinatorial chemistryCyclocondensation reaction0104 chemical sciencesEnzymechemistryAnticancer activitieThymidylate synthasePotential anticancer agent
researchProduct

Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity.

2016

Indexación: Web of Science Theoretical reactivity indices based on the conceptual Density Functional Theory (DFT) have become a powerful tool for the semiquantitative study of organic reactivity. A large number of reactivity indices have been proposed in the literature. Herein, global quantities like the electronic chemical potential μ, the electrophilicity ω and the nucleophilicity N indices, and local condensed indices like the electrophilic and nucleophilic Parr functions, as the most relevant indices for the study of organic reactivity, are discussed. http://www.mdpi.com/1420-3049/21/6/748

Chemical PhenomenaNucleophilicityChemistry OrganicPharmaceutical ScienceElectronsnucleophilicityReview010402 general chemistry01 natural sciencesreactivity indicesAnalytical ChemistryMolecular electron density theorylcsh:QD241-441Reactivity indicesNucleophilelcsh:Organic chemistryconceptual DFTParr functionsComputational chemistryDrug DiscoveryOrganic chemistryReactivity (chemistry)Physical and Theoretical ChemistryElectrophilicity010405 organic chemistryChemistryOrganic Chemistrymolecular electron density theory0104 chemical sciencesChemistry (miscellaneous)Conceptual DFTElectrophileMolecular MedicineQuantum TheoryDensity functional theoryelectrophilicityMolecules (Basel, Switzerland)
researchProduct

Penetration enhancer containing vesicles as carriers for dermal delivery of tretinoin.

2011

The ability of a recently developed novel class of liposomes to promote dermal delivery of tretinoin (TRA) was evaluated. New penetration enhancer-containing vesicles (PEVs) were prepared adding to conventional phosphatidylcholine vesicles (control liposomes) different hydrophilic penetration enhancers: Oramix® NS10 (OrNS10), Labrasol® (Lab), Transcutol® P (Trc), and propylene glycol (PG). Vesicles were characterized by morphology, size distribution, zeta potential, incorporation efficiency, stability, rheological behaviour, and deformability. Small, negatively charged, non-deformable, multilamellar vesicles were obtained. Rheological studies showed that PEVs had fluidity higher than conven…

Chemical PhenomenaStereochemistryDrug CompoundingSus scrofaPharmaceutical ScienceTretinoinAdministration CutaneousPermeabilityGlyceridesDiffusionchemistry.chemical_compoundGlucosidesPhosphatidylcholineZeta potentialAnimalsMicroparticleOrganic ChemicalsTransdermalSkinLiposomeDrug CarriersViscosityVesiclefungiPenetration (firestop)PermeationchemistryAnimals NewbornLiposomesBiophysicsEthylene GlycolsPharmaceutical VehiclesRheologyDialysisHydrophobic and Hydrophilic InteractionsInternational journal of pharmaceutics
researchProduct

Making Broad Proteome Protein Measurements in 1−5 min Using High-Speed RPLC Separations and High-Accuracy Mass Measurements

2005

The throughput of proteomics measurements that provide broad protein coverage is limited by the quality and speed of both the separations as well as the subsequent mass spectrometric analysis; at present, analysis times can range anywhere from hours (high throughput) to days or longer (low throughput). We have explored the basis for proteomics analyses conducted on the order of minutes using high-speed capillary RPLC combined through on-line electrospray ionization interface with high-accuracy mass spectrometry (MS) measurements. Short 0.8-microm porous C18 particle-packed 50-microm-i.d. capillaries were used to speed the RPLC separations while still providing high-quality separations. Both…

Chemical ionizationElectrosprayTime FactorsChromatographyProteomeChemistryElutionElectrospray ionizationAnalytical chemistryMass spectrometryMass SpectrometryPeptide FragmentsFourier transform ion cyclotron resonanceFourier transform spectroscopyAnalytical ChemistrySpectroscopy Fourier Transform InfraredAnimalsHumansTrypsinHydrophobic and Hydrophilic InteractionsIon cyclotron resonanceChromatography LiquidAnalytical Chemistry
researchProduct