Search results for "HM"
showing 10 items of 10594 documents
Dual attachment pairs in categorically-algebraic topology
2011
[EN] The paper is a continuation of our study on developing a new approach to (lattice-valued) topological structures, which relies on category theory and universal algebra, and which is called categorically-algebraic (catalg) topology. The new framework is used to build a topological setting, based in a catalg extension of the set-theoretic membership relation "e" called dual attachment, thereby dualizing the notion of attachment introduced by the authors earlier. Following the recent interest of the fuzzy community in topological systems of S. Vickers, we clarify completely relationships between these structures and (dual) attachment, showing that unlike the former, the latter have no inh…
MoMo: enabling hybrid museums
2005
Present-day museums are not mere passive institutions for the preservation of a society's cultural heritage. They have become instead learning environments, research centres and even tourist attractions. The paper introduces the notion of a hybrid museum (HM) in which wireless personal digital devices (PDAs) are used to tailor digital contents to the visitor to enrich both the learning and entertainment experience. The paper describes a fully functional hybrid museum infrastructure (MoMo) implemented with the.NET compact framework running on the PocketPC platform. Several research challenges that had to be faced during the implementation of the system such as the exploration of large sets o…
Dynamical learning of a photonics quantum-state engineering process
2021
Abstract. Experimental engineering of high-dimensional quantum states is a crucial task for several quantum information protocols. However, a high degree of precision in the characterization of the noisy experimental apparatus is required to apply existing quantum-state engineering protocols. This is often lacking in practical scenarios, affecting the quality of the engineered states. We implement, experimentally, an automated adaptive optimization protocol to engineer photonic orbital angular momentum (OAM) states. The protocol, given a target output state, performs an online estimation of the quality of the currently produced states, relying on output measurement statistics, and determine…
Variable time amplitude amplification and quantum algorithms for linear algebra problems
2012
Quantum amplitude amplification is a method of increasing a success probability of an algorithm from a small epsilon>0 to Theta(1) with less repetitions than classically. In this paper, we generalize quantum amplitude amplification to the case when parts of the algorithm that is being amplified stop at different times. We then apply the new variable time amplitude amplification to give two new quantum algorithms for linear algebra problems. Our first algorithm is an improvement of Harrow et al. algorithm for solving systems of linear equations. We improve the running time of the algorithm from O(k^2 log N) to O(k log^3 k log N) where k is the condition number of the system of equations. …
A comprehensive probabilistic analysis of approximate SIR‐type epidemiological models via full randomized discrete‐time Markov chain formulation with…
2020
Spanish Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P; Generalitat Valenciana, Grant/Award Number: APOSTD/2019/128; Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P
Generalised bisection method for optimum ultrasonic ray tracing and focusing in multi-layered structures
2021
Ultrasonic testing has been used for many decades, proving itself very efficient for detecting defects in many industrial sectors. The desire to apply ultrasonic testing to geometrically complex structures, and to anisotropic, inhomogeneous materials, together with the advent of more powerful electronics and software, is constantly pushing the applicability of ultrasonic waves to their limits. General ray tracing models, suitable for calculating the proper incident angle of single element probes and the proper time delay of phased array, are currently required. They can support the development of new imaging techniques, as Full Matrix Capture and Total Focusing Method, and the execution of …
Impact of the erase algorithms on flash memory lifetime
2017
This paper presents a comparative study on the impact of the erase algorithm on flash memory lifetime, to demonstrate how the reduction of overall stress, suffered by memories, will increase their lifetime, thanks to a smart management of erase operations. To this purpose a fixed erase voltage, equal to the maximum value and the maximum time-window, was taken as the reference test; while an algorithm with adaptive voltage levels and the same overall time-window was designed and implemented in order to compare their experimental results. This study was carried out by using an innovative Automated Test Equipment, named Portable-ATE, tailored for Memory Test Chip and designed for performance e…
Batch-to-Melt Conversion Kinetics in Sodium Aluminosilicate Batches Using Different Alumina Raw Materials
2016
The batch-to-melt conversion in batches of sand, soda ash and corundum (C), alumina spinel (A), boehmite (B), or gibbsite (G) as Al2O3 carrier are studied using thermal analysis, X-ray diffraction, and 27Al nuclear magnetic resonance spectroscopy. Laboratory-scaled batches are either heated continuously or quenched from 1600°C in a series of increasing dwell times. The results show that the conversion from the raw materials to the fresh melt proceeds in two kinetic stages. During the first stage (3–5 min), fast conversion of nearly 95% by mass occurs and the conversion coefficient increases in the order G < C ≈ A < B. The second stage is controlled by the slow dissolution of intermediate cr…
Maximum Torque Per Ampere control algorithm for low saliency ratio interior permanent magnet synchronous motors
2017
This paper presents an investigation on the comparison between the Maximum Torque Per Ampere (MTPA) and the Field Orientation Control (FOC) algorithms for interior permanent magnet synchronous machines (IPMSMs). In particular, this study was carried out on a small-power IPMSM with low salience ratio. Both control algorithms have been implemented in the Matlab/Simulink environment, obtaining promising results.
Multi-application Based Fault-Tolerant Network-on-Chip Design for Mesh Topology Using Reconfigurable Architecture
2019
In this paper, we propose a two-step fault-tolerant approach to address the faults occurred in cores. In the first stage, a Particle Swarm Optimization (PSO) based approach has been proposed for the fault-tolerant mapping of multiple applications on to the mesh based reconfigurable architecture by introducing spare cores and a heuristic has been proposed for the reconfiguration in the second stage. The proposed approach has been experimented by taking several benchmark applications into consideration. Communication cost comparisons have been carried out by taking the failed cores as user input and the experimental results show that our approach could get improvements in terms of communicati…