Search results for "HYDROGELS"
showing 10 items of 299 documents
Multi-scale structural analysis of xyloglucan colloidal dispersions and hydro-alcoholic gels
2020
Xyloglucans are highly branched, hydroxyl rich polyglucans that for their abundance in nature, biocompatibility, film forming and gelation ability may take a prominent role in the design and fabrication of biomedical devices, including in situ forming scaffolds for tissue engineering, wound dressings and epidermal sensors. The understanding and exploitation of their self-assembly behavior is key for the device performance optimization. A multi-scale analysis, conducted combining small-angle X-ray scattering, both static and dynamic light scattering at large and small angles, and rheological measurements, provides a description of the supramolecular organization of this biopolymer, from the …
An Inverse Thermogelling Bioink Based on an ABA-Type Poly(2-oxazoline) Amphiphile
2021
Hydrogels are key components in several biomedical research areas such as drug delivery, tissue engineering, and biofabrication. Here, a novel ABA-type triblock copolymer comprising poly(2-methyl-2-oxazoline) as the hydrophilic A blocks and poly(2-phenethyl-2-oxazoline) as the aromatic and hydrophobic B block is introduced. Above the critical micelle concentration, the polymer self-assembles into small spherical polymer micelles with a hydrodynamic radius of approx 8-8.5 nm. Interestingly, this specific combination of hydrophilic and hydrophobic aromatic moieties leads to rapid thermoresponsive inverse gelation at polymer concentrations above a critical gelation concentration (20 wt %) into…
Surface-Assisted Self-Assembly of a Hydrogel by Proton Diffusion
2018
International audience; Controlling supramolecular growth at solid surfaces is of great importance to expand the scope of supramolecular materials. Here we describe a dendritic benzene-1,3,5-tricarboxamide peptide conjugate whose assembly can be triggered by a pH jump. Stopped flow kinetics and mathematical modeling provide a quantitative understanding of the nucleation, elongation, and fragmentation behavior in solution. To assemble the molecule at a solid-liquid interface, we use proton diffusion from the bulk. The latter needs to be slower than the lag phase of nucleation in order to progressively grow a hydrogel outwards from the surface. Our method of surface-assisted self-assembly is …
Thermodynamic control over energy dissipation modes in dual-network hydrogels based on metal-ligand coordination.
2020
Modern polymeric hydrogels use reversible bonds to mimic biological functionalities. However, true biological materials benefit from several supramolecular elements and deliver multiple functions at the same time. To approach similar creation and control of multiple different functional elements in a synthetic soft material, we develop a model dual-network hydrogel in which multiple energy dissipating modes are formed by metal–ligand coordination and regulated by their association thermodynamics. This idea is realized by using linear and tetra-arm poly(ethylene glycol) (PEG) precursors with complementary reactive end groups. The former also carries terpyridine ligands on both ends, which fo…
Wavelength-Selective Softening of Hydrogel Networks.
2021
Photoresponsive hydrogels hold key potential in advanced biomedical applications including tissue engineering, regenerative medicine, and drug delivery, as well as intricately engineered functions such as biosensing, soft robotics, and bioelectronics. Herein, the wavelength-dependent degradation of bio-orthogonal poly(ethylene glycol) hydrogels is reported, using three selective activation levels. Specifically, three chromophores are exploited, that is, ortho-nitrobenzene, dimethyl aminobenzene, and bimane, each absorbing light at different wavelengths. By examining their photochemical action plots, the wavelength-dependent reactivity of the photocleavable moieties is determined. The wavele…
Near-Infrared Spectra of Water Confined in Silica Hydrogels in the Temperature Interval 365−5 K
2002
We have used a sol−gel technique to obtain optically transparent hydrogels in which water is trapped within a tridimensional disordered silica matrix. A suitable aging of these hydrogels enables to have transparent noncracking samples down to cryogenic temperatures. We report the optical absorption spectra, in the near-infrared region, of water trapped in our silica hydrogels, measured in the temperature range 365−5 K, and we compare them with the same spectra of liquid water, measured in the temperature range 365−263 K. The data show that it is possible to have noncrystallizing water even at 5 K: indeed, the overtone bands at ∼1.41 μm and at ∼1.155 μmtypical of “weakly bonded” water molec…
Porous structure of Purevision™ versus Focus® Night&Day™ and conventional hydrogel contact lenses
2002
The surface and bulk structures of hydrogel contact lenses that contain siloxane moieties, Purevision™ (balafilcon A) and Focus®Night&Day™ (lotrafilcon A), were investigated. Standard hydrogel lenses of low (Seequence®), medium (Acuvue®), and high water content (Precision UV®) were used as controls. All the lenses were dehydrated in a series of ethanol solutions of increased concentration, critical-point dried in CO2, and sputter coated with gold/palladium before they were examined by scanning electron microscopy. Of all lenses examined, only the balafilcon lenses presented, in addition to the polymer network porosity characteristic of all hydrogels, a macroporous structure that was observe…
Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering
2013
In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. T…
Implantable Sensors Based on Gold Nanoparticles for Continuous Long-Term Concentration Monitoring in the Body.
2021
Implantable sensors continuously transmit information on vital values or biomarker concentrations in bodily fluids, enabling physicians to survey disease progression and monitor therapeutic success. However, currently available technologies still face difficulties with long-term operation and transferability to different analytes. We show the potential of a generalizable platform based on gold nanoparticles embedded in a hydrogel for long-term implanted biosensing. Using optical imaging and an intelligent sensor/reference-design, we assess the tissue concentration of kanamycin in anesthetized rats by interrogating our implanted sensor noninvasively through the skin. Combining a tissue-integ…
Switchable surface structured hydrogel coatings
2017
Switchable surface structures based on hydrogels are an emerging field in material science, microfluidics, soft robotics and anti-fouling. Here, we describe a novel method that uses a photo-cross-linkable terpolymer to create a hydrogel coating with a switchable surface structure. The terpolymer is based on poly(N-isopropylacrylamide) (PNIPAm) and it is shown that simple coating technologies like slit die coating can be used under ambient conditions. It is also shown that the swelling ratio of the coating is controlled by the energy dose of ultraviolet (UV) light. Simple and complex surface structures were created using respectively single or multiple UV illumination steps through masks and…