Search results for "HYDROGELS"
showing 10 items of 299 documents
E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles
2012
Abstract PANI aqueous nanocolloids in their acid-doped, inherently conductive form were synthesised by means of suitable water soluble polymers used as stabilisers. In particular, poly(vinyl alcohol) (PVA) or chitosan (CT) was used to stabilise PANI nanoparticles, thus preventing PANI precipitation during synthesis and upon storage. Subsequently, e-beam irradiation of the PANI dispersions has been performed with a 12 MeV Linac accelerator. PVA-PANI nanocolloid has been transformed into a PVA-PANI hydrogel nanocomposite by radiation induced crosslinking of PVA. CT-PANI nanoparticles dispersion, in turn, was added to PVA to obtain wall-to-wall gels, as chitosan mainly undergoes chain scission…
Near-infrared light-responsive and antibacterial injectable hydrogels with antioxidant activity based on a Dopamine-functionalized Gellan Gum for wou…
2022
The development of wound dressings with combined antioxidant, antibacterial and tissue adhesion functions has been a difficult medical task for the treatment of wound infections. We synthetized a dopamine and PEG functionalized Gellan Gum (GG) to produce an injectable hydrogel with radical scavenging activity having both specific and aspecific antibiotic/antimicrobial properties. Using starting GG with different molecular weights, we obtained two derivatives that have been used to prepare the gel precursor dispersion, that undergoes gelation in the presence of colistin and dried microparticles (MPs) functionalized on the surface with polydopamine (pDA). Both were used to dope the hydrogel, …
Protein materials as sustainable non- and minimally invasive strategies for biomedical applications
2022
Protein-based materials have found applications in a wide range of biomedical fields because of their biocompatibility, biodegradability and great versatility. Materials of different physical forms including particles, hydrogels, films, fibers and microneedles have been fabricated e.g. as carriers for drug delivery, factors to promote wound healing and as structural support for the generation of new tissue. This review aims at providing an overview of the current scientific knowledge on protein-based materials, and selected preclinical and clinical studies will be reviewed in depth as examples of the latest progress within the field of protein-based materials, specifically focusing on non- …
Xyloglucan-based hydrogels: A biomaterials chemistry contribution towards advanced wound healing
The last two decades have witnessed the introduction of several new wound dressings, with many of them being hydrogels for the advantages that these materials can offer in the application. However, despite the advancements and the wide range of dressings available, wound management is still an extremely challenging task due to its subjectivity, complexity and scarce knowledge of the wound healing process itself, and patient variability. For this reason, an interdisciplinary approach to wound care that can help reducing the incidence and prevalence of wounds is needed. One important goal would be to develop “smart” wound dressings that are easy to apply, wear and be removed, that are able to…
Photocrosslinking of dextran and polyaspartamide derivatives: a combination suitable for colon-specific drug delivery.
2007
Abstract The aim of this study was to prepare and characterize novel hydrogels with polysaccharide–polyaminoacid structure, able to undergo an enzymatic hydrolysis in the colon and potentially useful for treating inflammatory bowel diseases (IBD). Starting materials were methacrylated dextran (DEX-MA) and methacrylated α,β-poly(N-2-hydroxyethyl)- dl -aspartamide (PHM). These polymers were photocrosslinked by exposure of their aqueous solutions at 313 nm without photoinitiators. Different samples, shaped as microparticles, were obtained as a function of polymer concentration and irradiation time. FT-IR analysis confirmed the occurrence of a co-crosslinking between DEX-MA and PHM in all exper…
Cell adhesion on UV-crosslinked polyurethane gels with adjustable mechanical strength and thermoresponsiveness
2021
Temperature-responsive polyurethane (PU) hydrogels represent a versatile material platform for modern tissue engineering and biomedical applications. However, besides intrinsic advantages such as high mechanical strength and a hydrolysable backbone composition, plain PU materials are generally lacking bio-adhesive properties. To overcome this shortcoming, the authors focus on the synthesis of thermoresponsive PU hydrogels with variable mechanical and cell adhesive properties obtained from linear precursor PUs based on poly(ethylene glycol)s (pEG) with different molar masses, isophorone diisocyanate, and a dimerizable dimethylmaleimide (DMMI)-diol. The cloud point temperatures of the dilute,…
Salt partitioning in ionized, thermo-responsive hydrogels: perspective to water desalination
2021
Charged hydrogels are capable of swelling in aqueous salt solutions, whereby part of the salt ions is repelled due to the presence of fixed charged groups inside the hydrogel. This effect creates a concentration gradient between the absorbed solution and the surrounding fluid known as salt partitioning, offering a potential for these materials to be employed to desalinate saltwater. If the charged hydrogels are thermo-sensitive as well, then the purer, absorbed solution can be recovered by shrinking the hydrogels upon temperature change. To tailor that potential in water-purification and desalination applications, the main parameters influencing the salt partitioning, the deswelling of the …
On the origin of functionalization in one-pot radiation synthesis of nanogels from aqueous polymer solutions
2016
Radiation-engineered poly(N-vinyl pyrrolidone) nanogels are very interesting biocompatible nanocarriers for i.v. administration of therapeutics and contrast agents for bioimaging. The manufacturing process is fast and effective, it grants excellent control of particle size and simultaneous sterilization of the formed nanogels. Interestingly, primary amino groups and carboxyl groups, useful for (bio)conjugation, are also formed in a dose-dependent fashion. In this paper, by means of both numerical simulations and experiments, the origin of nanogel size control and functionalization is investigated. This understanding offers a new dimension for the design and production of radiation-sculpture…
From Biocompatible to Biodegradable: Poly(Ethylene Glycol)s with Predetermined Breaking Points
2013
Poly(ethylene glycol) (PEG) is the gold standard polymer for biomedical applications. PEG is known for its biocompatibility and antifouling properties and is widely used for bioconjugation. However, like other synthetic polymers in the field, PEG is not biodegradable, limiting its use for parenteral formulations and protein conjugation to a molecular weight range with a specific upper limit (commonly 40–60 kDa) to avoid polyether accumulation in human tissue. For these biomedical applications, but also for other purposes such as cleavable hydrogels and templates for porous membranes, several routes for the insertion of in-chain biocleavable moieties, such as acetals or disulfides, into PEG …
Electrical properties of γ-crosslinked hydrogels incorporating organic conducting polymers
2007
Abstract Hydrogel composites containing nanoparticles of the protonated emeraldine form of polyaniline (PANI-PE) have been synthesised by γ-irradiation, using either polyvinyl pyrrolidone (PVP) or polyvinyl alcohol (PVA) as steric stabilisers. Swelling behaviour of both hydrogels is reported, together with an electrical characterisation of composites, before and after gel network formation, performed by cyclic voltammetry and impedance spectroscopy. Similarities and differences between the two composite systems are discussed.