Search results for "HYDROGEN"
showing 10 items of 4254 documents
Unsymmetrical Iron P-NH-P' Catalysts for the Asymmetric Pressure Hydrogenation of Aryl Ketones.
2017
R.H.M. thanks NSERC Canada for a Discovery grant and the Canada Council for the Arts for a Killam Fellowship. This work was also made possible by the SCICOMP NMR facilities provided by the Canada Foundation for Innovation, project number 19119, and the Ontario Ministry of Research, Innovation and Science. The Deutscher Akademischer Austauschdienst (DAAD) is thanked for support for A.P. Calculations were performed using the facilities of SHARCNET and Scinet of Compute/Calcul Canada
Cooperative N–H bond activation by amido-Ge(ii) cations
2020
N-heterocyclic carbene (NHC) and tertiary phosphine-stabilized germylium-ylidene cations, [R(L)Ge:]+, featuring tethered amido substituents at R have been synthesized via halide abstraction. Characterization in the solid state by X-ray crystallography shows these systems to be monomeric, featuring a two-coordinate C,N- or P,N-ligated germanium atom. The presence of the strongly Lewis acidic cationic germanium centre and proximal amide function allows for facile cleavage of N-H bonds in 1,2-fashion: the products resulting from reactions with carbazole feature a tethered secondary amine donor bound to a three-coordinate carbazolyl-GeII centre. In each case, addition of the components of the N…
Computational study of the spin-forbidden H 2 oxidative addition to 16-electron Fe(0) complexes
2003
International audience; The spin-forbidden oxidative addition of H2 to Fe(CO)4, Fe(PH3)4, Fe(dpe)2 and Fe(dmpe)2 [dpe = H2PCH2CH2PH2, dmpe = (CH3)2PCH2CH2P(CH3)2] has been investigated by density functional theory using a modified B3PW91 functional. All 16-electron fragments are found to adopt a spin triplet ground state. The H2 addition involves a spin crossover in the reagents region of configurational space, at a significantly higher energy relative to the triplet dissociation asymptote and, for the case of Fe(CO)4·H2, even higher than the singlet dissociation asymptote. After crossing to the singlet surface, the addition proceeds directly to the classical cis-dihydride product. Only for…
Identification and H(D)-bond energies of C-H(D)Cl interactions in chloride-haloalkane clusters: a combined X-ray crystallographic, spectroscopic, and…
2016
The cationic (1,3,5-triazapentadiene)Pt(II) complex [Pt{NH[double bond, length as m-dash]C(N(CH2)5)N(Ph)C(NH2)[double bond, length as m-dash]NPh}2]Cl2 ([]Cl2) was crystallized from four haloalkane solvents giving [][Cl2(CDCl3)4], [][Cl2(CHBr3)4], [][Cl2(CH2Cl2)2], and [][Cl2(C2H4Cl2)2] solvates that were studied by X-ray diffraction. In the crystal structures of [][Cl2(CDCl3)4] and [][Cl2(CHBr3)4], the Cl(-) ion interacts with two haloform molecules via C-DCl(-) and C-HCl(-) contacts, thus forming the negatively charged isostructural clusters [Cl(CDCl3)2](-) and [Cl(CHBr3)2](-). In the structures of [][Cl2(CH2Cl2)2] and [][Cl2(C2H4Cl2)2], cations [](2+) are linked to a 3D-network by a syste…
Hydrogen-bonded networks of [Fe(bpp)2]2+spin crossover complexes and dicarboxylate anions: structural and photomagnetic properties
2016
The paper reports the syntheses, crystal structures, thermal and (photo)magnetic properties of spin crossover salts of formula [Fe(bpp)2](C6H8O4)·4H2O (1·4H2O), [Fe(bpp)2](C8H4O4)·2CH3OH·H2O (2·2MeOH·H2O) and [Fe(bpp)2](C8H4O4)·5H2O (2·5H2O) (bpp = 2,6-bis(pyrazol-3yl)pyridine; C6H8O4 = adipate dianion; C8H4O4 = terephthalate dianion). The salts exhibit an intricate network of hydrogen bonds between low-spin iron(II) complexes and carboxylate dianions, with solvent molecules sitting in the voids. Desolvation is accompanied by a low-spin (LS) to high-spin (HS) transformation in the materials. The dehydrated phase 2 undergoes a two-step transition with a second step showing thermal hysteresis…
A Ferroelectric Iron(II) Spin Crossover Material
2017
A dual-function material in which ferroelectricity and spin crossover coexist in the same temperature range has been obtained. Our synthetic strategy allows the construction of acentric crystal structures in a predictable way and is based on the high directionality of hydrogen bonds. The well-known iron(II) spin crossover complex [Fe(bpp)₂]²+ (bpp = 2,6-bis(pyrazol-3-yl)pyridine), a four-fold noncentrosymmetric H-bond donor, was combined with a disymmetric H-bond acceptor such as the isonicotinate (isonic) anion to afford [Fe(bpp)₂](isonic)₂·2H₂O. This low-spin iron(II) compound crystallises in the acentric nonpolar I-4 space group and shows piezoelectricity and SHG properties. Upon dehydra…
Interplay of hydrogen bonding and π–π interactions in the molecular complex of 2,6-lutidine N-oxide and water
2006
Abstract The crystal and molecular structure of 2,6-lutidine N-oxide monohydrate (1) has been determined by X-ray diffraction analysis. Each water molecule is acting as bridging ligand between the N→O moieties of two 2,6-lutidine N-oxide molecules through moderate strong intermolecular hydrogen bonding (O–H⋯O, O⋯O distances are 2.787(2) and 2.832 (2) A) giving rise to a one-dimensional (1D) polymeric helical chain. A two-dimensional (2D) layered network is then formed by self-assembly of 1D helical chains via strong π–π interactions of the aromatic rings (interplanar distances 3.385 A). The molecular structure of 1 is compared with that for the already reported molecular structures of 2-ace…
Structural Tuning and Conformational Stability of Aromatic Oligoamide Foldamers
2017
A series of aromatic oligoamide foldamers with two or three pyridine-2,6-dicarboxamide units as their main folding motifs and varying aromatic building blocks as linkers have been synthetized to study the effects of the structural variation on the folding properties and conformational stability. Crystallographic studies showed that in the solid state the central linker unit either elongates the helices and more open S-shaped conformations, compresses the helices to more compact conformations or acts as a rigid spacer separating the pyridine-2,6-dicarboxamide units, which for their part add the predictability of the conformational properties. Multidimensional NMR studies showed that, even in…
A new hydrogen bonding motif involved in self-recognition in the solid state by functionalised macrocycles
2011
Self-recognition within the crystal lattices of three functionalised macrocycles results in the formation of arrays of remarkably similar hermaphroditic pairs of macrocycles. In the case of two of the macrocycles containing acylhydrazine substituents, a hitherto unknown recognition pattern is found in the interaction of the hydrazine moiety with crown-ether oxygen atoms.
Sulfur, tin and gold derivatives of 1-(2'-pyridyl)-ortho-carborane, 1-R-2-X-1,2-C2B10H10 (R = 2'-pyridyl, X = SH, SnMe3 or AuPPh3).
2004
Reaction of the lithium salt of 1-(2'-pyridyl)-ortho-carborane, Li[1-R-1,2-C(2)B(10)H(10)](R = 2'-NC(5)H(4)), with sulfur, followed by hydrolysis, gave the mercapto-o-carborane, 1-R-2-SH-1,2-C(2)B(10)H(10) which forms chiral crystals containing helical chains of molecules linked by intermolecular S-H...N hydrogen bonds. The cage C(1)-C(2) and exo C(2)-S bond lengths (1.730(3) and 1.775(2)[Angstrom], respectively) are indicative of exo S=C pi bonding. The tin derivative 1-R-2-SnMe(3)-1,2-C(2)B(10)H(10), prepared from Li[1-R-1,2-C(2)B(10)H(10)] and Me(3)SnCl, crystallises with no significant intermolecular interactions. The pyridyl group lies in the C(1)-C(2)-Sn plane, oriented to minimise th…