Search results for "Half-sandwich"
showing 7 items of 7 documents
Experimental and theoretical characterization of the strong effects on DNA stability caused by half-sandwich Ru(II) and Ir(III) bearing thiabendazole…
2020
Abstract: The synthesis and characterization of two half-sandwich complexes of Ru(II) and Ir(III) with thiabendazole as ancillary ligand and their DNA binding ability were investigated using experimental and computational methods. 1H NMR and acid–base studies have shown that aquo-complexes are the reactive species. Kinetic studies show that both complexes bind covalently to DNA through the metal site and non covalently through the ancillary ligand. Thermal stability studies, viscosity, circular dichroism measurements and quantum chemical calculations have shown that the covalent binding causes breaking of the H-bonding between base pairs, bringing about DNA denaturation and compaction. Addi…
Interaction of half-sandwich alkylmolybdenum(III) complexes with B(C6F5)3. The X-ray structure of [CpMo(η4-C4H6)(μ-Cl)(μ-CH2)(O)MoCp][CH3B(C6F5)3]
2001
Abstract The reactions of the half-sandwich molybdenum(III) complexes CpMo(η 4 -C 4 H 4 R 2 )(CH 3 ) 2 , where Cpη 5 -C 5 H 5 and RH or CH 3 , with equimolar amounts of B(C 6 F 5 ) 3 have been investigated in toluene. EPR monitoring shows the formation of an addition product which does not readily react with Lewis bases such as ethylene, pyridine, or PMe 3 . The analysis of the EPR properties and the X-ray structure of a decomposition product obtained from dichloromethane, [CpMo(η 4 -C 4 H 6 )(μ-Cl)(μ-CH 2 )(O)MoCp][CH 3 B(C 6 F 5 ) 3 ], indicate that the borane attack has occurred at the methyl position.
Preparation and structure of the 17-electron (η5-C5R5)Mo(OH)2(dppe) (R=Me, Et) organometallic compounds containing two gem-terminal hydroxide ligands
2000
International audience; Oxidation of (η5-C5R5)MoH3(dppe) (R=Me, Et) by Cp2Fe+ in wet THF leads to the formation of the corresponding (η5-C5R5)Mo(OH)2(dppe). These compounds show a low-potential reversible oxidation wave. The structure of the C5Et5 complex has been confirmed by X-ray diffraction methods: triclinic; space group ; a=11.030(1); b=12.533(1); c=16.241 (1) Å; α=68.585(7); β=75.197(5); γ=83.991(7)°; V=2020.6(3) Å3; Z=2; Dcalc=1.324 g cm−3, μ(Mo–Kα)=0.441 mm−1; R1=0.0325; wR2=0.0875 for 415 parameters and 6823 independent reflections [Rint=0.0177] with I=2σ(I). The molecule shows a four-legged piano-stool geometry with two terminal OH ligands in a relative trans configuration. The c…
High oxidation state aqueous organometallics: synthesis and structure of a dinuclear oxo(pentamethylcyclopentadienyl)acetato complex of molybdenum(IV…
2003
International audience; The zinc reduction of Cp*2Mo2O5 in a MeOH–H2O mixture in the presence of acetic acid affords the diamagnetic dinuclear compound [Cp*MoO(O2CCH3)]2. An X-ray structural investigation reveals a novel dioxo- and diacetato-bridged structure, with a relatively strong metal–metal bond [2.5524(3) Å]. The compound exhibits a reversible one-electron oxidation process in the cyclic voltammogram. A comparison with other related structures reveals the effect of the electric charge on the mononuclear or dinuclear structural choice.Zinc reduction of Cp*2Mo2O5 in water–methanol in the presence of acetic acid affords compound Cp*2Mo2O2(O2CCH3)2, whose dinuclar tetrabridged structure …
Half-sandwich Mo(III) complexes with asymmetric diazadiene ligands
2006
The asymmetric 1,4-diazadiene ligands R ∗ N CHCH NR ∗ [R ∗ = ( S )-CH(CH 3 )Ph], R 2 ∗ dad , and 2,2′-bis(4-ethyloxazoline), as-ox, have been used to generate half-sandwich Mo III derivatives by addition to Cp 2 Mo 2 Cl 4 . Ligand R 2 ∗ dad affords a mononuclear, paramagnetic 17-electron product, CpMoCl 2 ( R 2 ∗ dad ) , whereas as-ox leads to the isolation of a dinuclear compound where only one molecule of ligand has been added per two Mo atoms, Cp 2 Mo 2 Cl 4 (as-ox). In the presence of free as-ox, this compound coexists with the paramagnetic mononuclear complex in solution. Both products are capable of controlling the radical polymerization of styrene under typical atom transfer radical…
Bimetallic ruthenium-tin chemistry: synthesis and molecular structure of arene ruthenium complexes containing trichlorostannyl ligands
2010
A series of neutral, anionic and cationic arene ruthenium complexes containing the trichlorostannyl ligand have been synthesised from SnCl2 and the corresponding arene ruthenium dichloride dimers [(η6-arene)Ru(μ2-Cl)Cl]2 (arene = C6H6, PriC6H4Me). While the reaction with triphenylphosphine and stannous chloride only gives the neutral mono(trichlorostannyl) complexes [(η6-C6H6)Ru(PPh3)(SnCl3)Cl] (1) and [(η6-PriC6H4Me)Ru(PPh3)(SnCl3)Cl] (2), the neutral di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(NCPh)(SnCl3)2] (3) could be obtained for the para-cymene derivative with benzonitrile as additional ligand. By contrast, the analogous reaction with the benzene derivative leads to a salt compose…
Stable 17-electron Mo(III) complexes containing alkyl ligands
1999
Abstract The alkylation of the half-sandwich complex CpMoCl 2 ( η 4 -diene) (diene=C 4 H 6 , 2,3-Me 2 C 4 H 4 ) affords the first thermally stable 17-electron compounds containing Mo(III)–alkyl bonds.