Search results for "Hardy"

showing 10 items of 61 documents

Some Remarks on the Spectral Properties of Toeplitz Operators

2019

In this paper, we study some local spectral properties of Toeplitz operators $$T_\phi $$ defined on Hardy spaces, as the localized single-valued extension property and the property of being hereditarily polaroid.

Mathematics::Functional AnalysisPure mathematicsProperty (philosophy)Weyl-type theoremslocalized single-valued extension propertyGeneral MathematicsSpectral propertiesExtension (predicate logic)Hardy spaceToeplitz matrixsymbols.namesakeToeplitz operatorSettore MAT/05 - Analisi MatematicasymbolsMathematicsMediterranean Journal of Mathematics
researchProduct

On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain

2021

Abstract We study the wave inequality with a Hardy potential ∂ t t u − Δ u + λ | x | 2 u ≥ | u | p in  ( 0 , ∞ ) × Ω , $$\begin{array}{} \displaystyle \partial_{tt}u-{\it\Delta} u+\frac{\lambda}{|x|^2}u\geq |u|^p\quad \mbox{in } (0,\infty)\times {\it\Omega}, \end{array}$$ where Ω is the exterior of the unit ball in ℝ N , N ≥ 2, p > 1, and λ ≥ − N − 2 2 2 $\begin{array}{} \displaystyle \left(\frac{N-2}{2}\right)^2 \end{array}$ , under the inhomogeneous boundary condition α ∂ u ∂ ν ( t , x ) + β u ( t , x ) ≥ w ( x ) on  ( 0 , ∞ ) × ∂ Ω , $$\begin{array}{} \displaystyle \alpha \frac{\partial u}{\partial \nu}(t,x)+\beta u(t,x)\geq w(x)\quad\mbox{on } (0,\infty)\times \partial{\it\Omega}, \e…

PhysicsMathematics::Functional Analysis35b3335b44QA299.6-433critical exponentMathematics::Complex Variables010102 general mathematicsMathematical analysisMathematics::Classical Analysis and ODEshardy potentialMathematics::Spectral Theoryexterior domain01 natural sciencesDomain (software engineering)010101 applied mathematics35l05Settore MAT/05 - Analisi Matematicawave inequalitiesglobal weak solutions0101 mathematicsCritical exponentAnalysisAdvances in Nonlinear Analysis
researchProduct

Weak mixing implies weak mixing of higher orders along tempered functions

2009

AbstractWe extend the weakly mixing PET (polynomial ergodic theorem) obtained in Bergelson [Weakly mixing PET. Ergod. Th. & Dynam. Sys.7 (1987), 337–349] to much wider families of functions. Besides throwing new light on the question of ‘how much higher-degree mixing is hidden in weak mixing’, the obtained results also show the way to possible new extensions of the polynomial Szemerédi theorem obtained in Bergelson and Leibman [Polynomial extensions of van der Waerden’s and Szemerédi’s theorems. J. Amer. Math. Soc.9 (1996), 725–753].

PolynomialPure mathematicsApplied MathematicsGeneral MathematicsMathematical analysisVan der Waerden's theoremErgodic theoryHardy fieldMixing (physics)MathematicsErgodic Theory and Dynamical Systems
researchProduct

Hardy inequalities and Assouad dimensions

2017

We establish both sufficient and necessary conditions for weighted Hardy inequalities in metric spaces in terms of Assouad (co)dimensions. Our sufficient conditions in the case where the complement is thin are new even in Euclidean spaces, while in the case of a thick complement we give new formulations for previously known sufficient conditions which reveal a natural duality between these two cases. Our necessary conditions are rather straight-forward generalizations from the unweighted case, but together with some examples they indicate the essential sharpness of our results. In addition, we consider the mixed case where the complement may contain both thick and thin parts.

Pure mathematics26D15 (Primary) 31E05 46E35 (Secondary)Partial differential equationGeneral Mathematics010102 general mathematicsDuality (mathematics)01 natural sciencesFunctional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisMetric spaceAssouad (co)dimensionsMathematics - Classical Analysis and ODEsEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: Mathematicsmetric spaces Hardy inequalities0101 mathematicsAnalysisMathematicsComplement (set theory)
researchProduct

Asymptotic Behaviors of Solutions to quasilinear elliptic Equations with critical Sobolev growth and Hardy potential

2015

Abstract Optimal estimates on the asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations − Δ p u − μ | x | p | u | p − 2 u = Q ( x ) | u | N p N − p − 2 u , x ∈ R N , where 1 p N , 0 ≤ μ ( ( N − p ) / p ) p and Q ∈ L ∞ ( R N ) .

Pure mathematicsApplied Mathematicsmedia_common.quotation_subjectta111010102 general mathematicsMathematical analysisHardy's inequalitycomparison principleInfinity01 natural sciences010101 applied mathematicsSobolev spaceMathematics - Analysis of PDEs35J60 35B33FOS: Mathematicsquasilinear elliptic equationsasymptotic behaviors0101 mathematicsHardy's inequalityAnalysismedia_commonMathematicsAnalysis of PDEs (math.AP)
researchProduct

A note on the dimensions of Assouad and Aikawa

2013

We show that in Euclidean space and other regular metric spaces, the notions of dimensions defined by Assouad and Aikawa coincide. In addition, in more general metric spaces, we study the relationship between these two dimensions and a related codimension and give an application of the Aikawa (co)dimension for the Hardy inequalities.

Pure mathematicsAssouad dimensionEuclidean spaceGeneral Mathematicsmetric spaceDimension (graph theory)Mathematical analysista111CodimensionAikawa dimension54F4554E35Metric space26D15Hardy inequalitydoubling measureMathematics::Metric Geometry28A12MathematicsJournal of the Mathematical Society of Japan
researchProduct

Inner functions and local shape of orthonormal wavelets

2011

Abstract Conditions characterizing all orthonormal wavelets of L 2 ( R ) are given in terms of suitable orthonormal bases (ONBs) related with the translation and dilation operators. A particular choice of the ONBs, the so-called Haar bases, leads to new methods for constructing orthonormal wavelets from certain families of Hardy functions. Inner functions and the corresponding backward shift invariant subspaces articulate the structure of these families. The new algorithms focus on the local shape of the wavelet.

Pure mathematicsHardy spacesApplied MathematicsMathematical analysisWavelet transformHardy spaceLinear subspacesymbols.namesakeGeneralized Fourier seriesWaveletOrthonormal waveletssymbolsOrthonormal basisInvariant (mathematics)OrthonormalityInner functionsMathematicsApplied and Computational Harmonic Analysis
researchProduct

Hardy–Littlewood Inequality

2019

Pure mathematicsHardy–Littlewood inequalityMathematics
researchProduct

Self-improvement of pointwise Hardy inequality

2019

We prove the self-improvement of a pointwise p p -Hardy inequality. The proof relies on maximal function techniques and a characterization of the inequality by curves.

Pure mathematicsInequalityGeneral Mathematicsmedia_common.quotation_subjectCharacterization (mathematics)Mathematics - Analysis of PDEsuniform fatnessClassical Analysis and ODEs (math.CA)FOS: Mathematicsepäyhtälötpointwise Hardy inequalitymedia_commonMathematicsPointwiseosittaisdifferentiaaliyhtälötSelf improvementApplied Mathematicsmetric spacemetriset avaruudetMetric spaceMathematics - Classical Analysis and ODEsself-improvementMaximal functionpotentiaaliteoria31C15 (Primary) 31E05 35A23 (Secondary)Analysis of PDEs (math.AP)
researchProduct

In between the inequalities of Sobolev and Hardy

2015

We establish both sufficient and necessary conditions for the validity of the so-called Hardy-Sobolev inequalities on open sets of the Euclidean space. These inequalities form a natural interpolating scale between the (weighted) Sobolev inequalities and the (weighted) Hardy inequalities. The Assouad dimension of the complement of the open set turns out to play an important role in both sufficient and necessary conditions.

Pure mathematicsInequalitymedia_common.quotation_subjectDimension (graph theory)Open set35A23 (26D15 46E35)Scale (descriptive set theory)01 natural sciencesSobolev inequalityMathematics - Analysis of PDEsEuclidean spaceClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsmedia_commonComplement (set theory)MathematicsMathematics::Functional AnalysisEuclidean space010102 general mathematicsMathematical analysista111010101 applied mathematicsSobolev spaceMathematics - Classical Analysis and ODEsHardy-Sobolev inequalitiesAnalysisAnalysis of PDEs (math.AP)
researchProduct