Search results for "Hausdorff dimension"

showing 10 items of 50 documents

Applications de type Lasota–Yorke à trou : mesure de probabilité conditionellement invariante et mesure de probabilité invariante sur l'ensemble des …

2003

Abstract Let T :I→I be a Lasota–Yorke map on the interval I, let Y be a nontrivial sub-interval of I and g 0 :I→ R + , be a strictly positive potential which belongs to BV and admits a conformal measure m. We give constructive conditions on Y ensuring the existence of absolutely continuous (w.r.t. m) conditionally invariant probability measures to nonabsorption in Y. These conditions imply also existence of an invariant probability measure on the set X∞ of points which never fall into Y. Our conditions allow rather “large” holes.

Statistics and ProbabilityDiscrete mathematicsPure mathematicsHausdorff dimensionErgodic theoryInvariant measureInterval (mathematics)Statistics Probability and UncertaintyInvariant (mathematics)Absolute continuityMeasure (mathematics)Probability measureMathematicsAnnales de l'Institut Henri Poincare (B) Probability and Statistics
researchProduct

Genericity of dimension drop on self-affine sets

2017

We prove that generically, for a self-affine set in $\mathbb{R}^d$, removing one of the affine maps which defines the set results in a strict reduction of the Hausdorff dimension. This gives a partial positive answer to a folklore open question.

Statistics and ProbabilityPure mathematicsthermodynamic formalismDynamical Systems (math.DS)01 natural sciencesself-affine setsingular value functionAffine combinationAffine hullClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - Dynamical Systems0101 mathematicsMathematicsDiscrete mathematicsta111010102 general mathematicsMinkowski–Bouligand dimensionproducts of matricesEffective dimension010101 applied mathematicsAffine coordinate systemMathematics - Classical Analysis and ODEsHausdorff dimensionAffine transformationStatistics Probability and UncertaintyStatistics & Probability Letters
researchProduct

On a Continuous Sárközy-Type Problem

2022

Abstract We prove that there exists a constant $\epsilon> 0$ with the following property: if $K \subset {\mathbb {R}}^2$ is a compact set that contains no pair of the form $\{x, x + (z, z^{2})\}$ for $z \neq 0$, then $\dim _{\textrm {H}} K \leq 2 - \epsilon $.

Szemerédi’s theoremfractalsGeneral Mathematicspolynomitpolynomial configurationsHausdorff dimensionfraktaalitmittateoriafinite fieldsharmoninen analyysiFourier transforms of measuresminimeasuresInternational Mathematics Research Notices
researchProduct

Boundary blow-up under Sobolev mappings

2014

We prove that for mappings $W^{1,n}(B^n, \R^n),$ continuous up to the boundary, with modulus of continuity satisfying certain divergence condition, the image of the boundary of the unit ball has zero $n$-Hausdorff measure. For H\"older continuous mappings we also prove an essentially sharp generalized Hausdorff dimension estimate.

Unit spherePure mathematicsSobolev mappingBoundary (topology)01 natural sciencesMeasure (mathematics)Hausdorff measureModulus of continuitymodulus of continuity0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics46E35Hausdorff measure0101 mathematicsMathematicsNumerical AnalysisApplied Mathematicsta111010102 general mathematicsZero (complex analysis)Sobolev spaceMathematics - Classical Analysis and ODEsHausdorff dimension010307 mathematical physics26B10Analysis26B35Analysis & PDE
researchProduct

Free vs. Locally Free Kleinian Groups

2015

Abstract We prove that Kleinian groups whose limit sets are Cantor sets of Hausdorff dimension < < 1 are free. On the other hand we construct for any ε > > 0 an example of a non-free purely hyperbolic Kleinian group whose limit set is a Cantor set of Hausdorff dimension < < 1 + + ε.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]0209 industrial biotechnologyPure mathematicsMathematics::Dynamical SystemsGeneral MathematicsMathematics::General TopologyGroup Theory (math.GR)02 engineering and technology01 natural sciencesMathematics - Geometric Topology020901 industrial engineering & automationDimension (vector space)[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsLimit (mathematics)topologia0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsryhmäteoriaGeometric Topology (math.GT)16. Peace & justiceMathematics::Geometric TopologyKleinian groupsCantor setTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESHausdorff dimensionComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLimit setMathematics - Group Theory
researchProduct

Generalized dimension distortion under Sobolev mappings

2011

dimensionmatematiikkaSobolev spacesHausdorff dimensionOrlicz spaces
researchProduct

Ledrappier-Young formula and exact dimensionality of self-affine measures

2017

In this paper, we solve the long standing open problem on exact dimensionality of self-affine measures on the plane. We show that every self-affine measure on the plane is exact dimensional regardless of the choice of the defining iterated function system. In higher dimensions, under certain assumptions, we prove that self-affine and quasi self-affine measures are exact dimensional. In both cases, the measures satisfy the Ledrappier-Young formula. peerReviewed

local dimensionPlane (geometry)General MathematicsOpen problem010102 general mathematicsMathematical analysista111Dynamical Systems (math.DS)01 natural sciencesMeasure (mathematics)self-affine set010101 applied mathematicsIterated function systemself-affine measureHausdorff dimension37C45 28A80FOS: MathematicsApplied mathematicsAffine transformation0101 mathematicsMathematics - Dynamical Systemshausdorff dimensionMathematicsCurse of dimensionality
researchProduct

ISODECIMAL NUMBERS

2006

The aim of this paper is to investigate pairs of real numbers of the type $(x,\frac{1}{x}),$ \ $(x,\frac{a}{x})$ and $(x,x^{2}),$ where the first component is a real number $x\neq0$ and the fractional parts of the coordinates are equal. We call such numbers \textit{isodecimal}.

ophantine approximationHausdorff dimensionbadly approximable
researchProduct

On the Porosity of Free Boundaries in Degenerate Variational Inequalities

2000

Abstract In this note we consider a certain degenerate variational problem with constraint identically zero. The exact growth of the solution near the free boundary is established. A consequence of this is that the free boundary is porous and therefore its Hausdorff dimension is less than N and hence it is of Lebesgue measure zero.

porosityLebesgue measureApplied MathematicsDegenerate energy levelsMathematical analysisZero (complex analysis)Boundary (topology)nonhomogeneous p-Laplace equationfree boundaryobstacle problemHausdorff dimensionVariational inequalityObstacle problemFree boundary problemAnalysisMathematicsJournal of Differential Equations
researchProduct

On arithmetic sums of Ahlfors-regular sets

2021

Let $A,B \subset \mathbb{R}$ be closed Ahlfors-regular sets with dimensions $\dim_{\mathrm{H}} A =: \alpha$ and $\dim_{\mathrm{H}} B =: \beta$. I prove that $$\dim_{\mathrm{H}} [A + \theta B] \geq \alpha + \beta \cdot \tfrac{1 - \alpha}{2 - \alpha}$$ for all $\theta \in \mathbb{R} \, \setminus \, E$, where $\dim_{\mathrm{H}} E = 0$.

sum-product problemkombinatoriikkaMathematics::General TopologyHausdorff dimensionMetric Geometry (math.MG)11B30 (primary) 28A80 (secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEsAhlfors-regular setsaritmetiikkaClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric GeometryMathematics - CombinatoricsmittateoriaCombinatorics (math.CO)Geometry and TopologyAnalysisGeometric and Functional Analysis
researchProduct