Search results for "Health informatics"
showing 10 items of 481 documents
Semi-automated evaluation tool for retinal vasculopathy.
2009
The ocular fundus is the only area of human body where vascular system is visible using relatively simple instrumentation. Furthermore, there is medical suggestive evidence of a direct relationship between certain measures of vascular characteristics in the ocular fundus (arteriolar and venular calibers and focal arteriolar narrowing) and cardiovascular diseases. In order to establish such relationship on sound statistical basis a method must be provided to measure the needed values in an easy, yet precise and repeatable way. This paper presents a system to assist physicians in signaling and storing the data associated to signs of vascular deterioration and vascular calibers in non-mydriati…
Computational issues in fitting joint frailty models for recurrent events with an associated terminal event.
2020
Abstract Background and objective: Joint frailty regression models are intended for the analysis of recurrent event times in the presence of informative drop-outs. They have been proposed for clinical trials to estimate the effect of some treatment on the rate of recurrent heart failure hospitalisations in the presence of drop-outs due to cardiovascular death. Whereas a R-software-package for fitting joint frailty models is available, some technical issues have to be solved in order to use SASⓇ 1 software, which is required in the regulatory environment of clinical trials. Methods: First, we demonstrate how to solve these issues by deriving proper likelihood-decompositions, in particular fo…
Bias artifact suppression on MR volumes.
2007
RF-Inhomogeneity correction is a relevant research topic in the field of Magnetic Resonance Imaging (MRI). A volume corrupted by this artifact exhibits nonuni- form illumination both inside a single slice and between adjacent ones. In this work a bias correction technique is presented, which suppresses this artifact on MR vol- umes scanned from different body parts without any a-priori hypothesis on the artifact model. Theoretical foundations of the method are reported together with experimental results and a comparison is presented with both the 2D version of the algorithm and other techniques that are widely used in MRI literature.
Automatic left ventricle volume calculation with explainability through a deep learning weak-supervision methodology
2021
[EN] Background and objective: Magnetic resonance imaging is the most reliable imaging technique to assess the heart. More specifically there is great importance in the analysis of the left ventricle, as the main pathologies directly affect this region. In order to characterize the left ventricle, it is necessary to extract its volume. In this work we present a neural network architecture that is capable of directly estimating the left ventricle volume in short axis cine Magnetic Resonance Imaging in the end-diastolic frame and provide a segmentation of the region which is the basis of the volume calculation, thus offering explain-ability to the estimated value. Methods: The network was des…
Matlab-based interface for the simultaneous acquisition of force measures and Doppler ultrasound muscular images
2012
This paper tackles the design of a graphical user interface (GUI) based on Matlab (MathWorks Inc., MA), a worldwide standard in the processing of biosignals, which allows the acquisition of muscular force signals and images from a ultrasound scanner simultaneously. Thus, it is possible to unify two key magnitudes for analyzing the evolution of muscular injuries: the force exerted by the muscle and section/length of the muscle when such force is exerted. This paper describes the modules developed to finally show its applicability with a case study to analyze the functioning capacity of the shoulder rotator cuff.
Measuring the agreement between brain connectivity networks.
2016
Investigating the level of similarity between two brain networks, resulting from measures of effective connectivity in the brain, can be of interest from many respects. In this study, we propose and test the idea to borrow measures of association used in machine learning to provide a measure of similarity between the structure of (un-weighted) brain connectivity networks. The measures here explored are the accuracy, Cohen's Kappa (K) and Area Under Curve (AUC). We implemented two simulation studies, reproducing two contexts of application that can be particularly interesting for practical applications, namely: i) in methodological studies, performed on surrogate data, aiming at comparing th…
2020
Abstract Background and objective Deep learning approaches are common in image processing, but often rely on supervised learning, which requires a large volume of training images, usually accompanied by hand-crafted labels. As labelled data are often not available, it would be desirable to develop methods that allow such data to be compiled automatically. In this study, we used a Generative Adversarial Network (GAN) to generate realistic B-mode musculoskeletal ultrasound images, and tested the suitability of two automated labelling approaches. Methods We used a model including two GANs each trained to transfer an image from one domain to another. The two inputs were a set of 100 longitudina…
Evaluation of the registration of temporal series of contrast-enhanced perfusion magnetic resonance 3D images of the liver.
2011
The registration of 2D and 3D images is one of the key tasks in medical image processing and analysis. Accurate registration is a crucial preprocessing step for many tasks; consequently, the evaluation of its accuracy becomes necessary. Unfortunately, this is a difficult task, especially when no golden pattern (true result) is available and when the signal values may have changed between successive images to be registered. This is the case this paper deals with: we have a series of 3D images, magnetic resonance images (MRI) of the liver and adjacent areas that have to be registered. They have been taken while a contrast is diffused through the liver tissue, so intensity of each observed poi…
Missing values in deduplication of electronic patient data
2011
Data deduplication refers to the process in which records referring to the same real-world entities are detected in datasets such that duplicated records can be eliminated. The denotation ‘record linkage’ is used here for the same problem.1 A typical application is the deduplication of medical registry data.2 3 Medical registries are institutions that collect medical and personal data in a standardized and comprehensive way. The primary aims are the creation of a pool of patients eligible for clinical or epidemiological studies and the computation of certain indices such as the incidence in order to oversee the development of diseases. The latter task in particular requires a database in wh…
Conceptualizations of Cyberchondria and Relations to the Anxiety Spectrum: Systematic Review and Meta-analysis
2021
Background Cyberchondria describes the detrimental effects of health-related internet use. Current conceptualizations agree that cyberchondria is associated with anxiety-related pathologies and may best be conceptualized as a safety behavior; however, little is known about its exact underlying mechanisms. Objective This systematic review and meta-analysis aims to give an overview of the conceptualizations of cyberchondria and its relation to anxiety-related pathologies, quantify the strength of association to health anxiety by using meta-analyses, highlight gaps in the literature, and outline a hypothetical integrative cognitive-behavioral model of cyberchondria based on the available empi…