Search results for "Heating"

showing 10 items of 248 documents

Modeling of ITER TF cooling system through 2D thermal analyses and enthalpy balance

2017

Abstract The winding pack of the ITER Toroidal Field (TF) coils is composed of 134 turns of Nb3Sn Cable in Conduit Conductor (CICCs) wound in 7 double pancakes and cooled by supercritical helium (He) at cryogenic temperature. The cooling of the Stainless Steel (SS) case supporting the winding pack is guaranteed by He circulation in 74 parallel channels. A 2D approach to compute the temperature distribution in the ITER TF winding pack is here proposed. The TF is divided in 32 poloidal segments, for each segment the corresponding 2D model is built and a thermal analysis is performed applying the corresponding nuclear heating computed with MCNP code considering the latest design updates, such …

Materials scienceMechanical EngineeringBulk temperatureTF winding packchemistry.chemical_elementMechanicsHeat transfer coefficientBlanket01 natural sciencesNusselt number010305 fluids & plasmasThermal conductivitychemistryNuclear Energy and EngineeringElectromagnetic coil0103 physical sciencesNuclear HeatingWater coolingGeneral Materials ScienceMaterials Science (all)010306 general physicsFE thermal analysiHeliumSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Domain wall transformations and hopping in La0.7Sr0.3MnO3nanostructures imaged with high resolution x-ray magnetic microscopy

2014

We investigate the effect of electric current pulse injection on domain walls in La(0.7)Sr(0.3)MnO(3) (LSMO) half-ring nanostructures by high resolution x-ray magnetic microscopy at room temperature. Due to the easily accessible Curie temperature of LSMO, we can employ reasonable current densities to induce the Joule heating necessary to observe effects such as hopping of the domain walls between different pinning sites and nucleation/annihilation events. Such effects are the dominant features close to the Curie temperature, while spin torque is found to play a small role close to room temperature. We are also able to observe thermally activated domain wall transformations and we find that,…

Materials scienceNanostructure530 PhysicsNucleation01 natural sciencesCondensed Matter::Materials ScienceLanthanum0103 physical sciencesMicroscopyddc:530General Materials Science010306 general physicsSpin (physics)010302 applied physicsMicroscopyCondensed matter physicsMagnetic PhenomenaX-RaysElectric ConductivityTemperatureOxides530 PhysikCondensed Matter PhysicsNanostructuresVortexDomain wall (magnetism)Manganese CompoundsStrontiumCurie temperatureCondensed Matter::Strongly Correlated ElectronsJoule heatingJournal of Physics: Condensed Matter
researchProduct

Flash microwave synthesis of trevorite nanoparticles.

2008

Nickel ferrite nanoparticles have several possible applications as cathode materials for rechargeable batteries, named 'lithium-ion' batteries. In this study, NiFe{sub 2}O{sub 4} was prepared by microwave induced thermohydrolysis. The obtained nanoparticles were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), BET method, transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). All the results show that the microwave one-step flash synthesis leads in a very short time to NiFe{sub 2}O{sub 4} nanoparticles with elementary particles size close to 4-5 nm, and high specific surfaces (close to 240 m…

Materials scienceNanostructureScanning electron microscopeXRDAnalytical chemistryNanoparticle02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyNanomaterialsInorganic ChemistryMaterials ChemistryIron oxideFerritesPhysical and Theoretical ChemistryNickel oxideX-ray spectroscopySmall angle X ray scatteringParticle sizeDispersive spectrometryLithium batteryNanostructured materials021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesElectronic Optical and Magnetic MaterialsElectrode materialMicrowave heatingOrganic conductorsX-ray crystallographyCeramics and CompositesFerrite (magnet)NanoparticlesNiFe2O40210 nano-technologyScanning electron microscopyMicrowaveTransmission electron microscopyNanomaterial synthesis
researchProduct

Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles

2014

Mesoporous silica coated upconverting nanoparticles are loaded with the anticancer drug doxorubicin and grafted with ruthenium complexes as photoactive molecular valves. Drug release was triggered by 974 nm light with 0.35 W cm(-2). Such low light intensity minimized overheating problems and prevented photodamage to biological samples.

Materials scienceNear infrared lightMetals and Alloyschemistry.chemical_elementNanotechnologyGeneral ChemistryMesoporous silicaPhotochemistryAnticancer drugCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsRutheniumLight intensitychemistryDrug deliveryMaterials ChemistryCeramics and CompositesUpconverting nanoparticlesOverheating (electricity)Chemical Communications
researchProduct

Laser heating and ablation at high repetition rate in thermal confinement regime

2006

International audience; Laser heating and ablation of materials with low absorption and thermal conductivity (paint and cement) were under experimental and theoretical investigations. The experiments were made with a high repetition rate Q-switched Nd:YAG laser (10 kHz, 90 ns pulse duration and l = 532 nm). High repetition rate laser heating resulted in pulse per pulse heat accumulation. A theoretical model of laser heating was developed and demonstrated a good agreement between the experimental temperatures measured with the infrared pyrometer and the calculated ones. With the fixed wavelength and laser pulse duration, the ablation threshold fluence of paint was found to depend on the repe…

Materials sciencePACS: 81.65 Cf; 42.62 Cf; 61.82 Msmedicine.medical_treatmentGeneral Physics and Astronomy02 engineering and technology01 natural sciencesFluenceModellinglaw.invention010309 opticsThermal conductivityOpticslaw0103 physical sciencesmedicinePyrometerLaser ablationLaser heatingbusiness.industryPulse durationHigh repetition rateSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsAblationLaserLaser ablationSurfaces Coatings and FilmsHeat capacity rateThermal confinement regime0210 nano-technologybusinessApplied Surface Science
researchProduct

Effect of DC Electric Field on the Emitted THz Signal of Antenna-Coupled Spintronic Emitters

2019

We study the impact of an external electric DC field on antenna-coupled spintronic THz emitters driven by a 90 fs, 1550 nm laser oscillator. Simultaneous application of external electric and magnetic field shows a quadratic decrease in peak-peak THz pulse with increase in the bias voltage. We ascribe this decrease to Joule heating caused by the DC current flowing through the spintronic material.

Materials scienceSpintronicsbusiness.industryTerahertz radiationBiasing02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldMagnetizationElectric field0103 physical sciencesOptoelectronicsAntenna (radio)010306 general physics0210 nano-technologyJoule heatingbusiness2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
researchProduct

Modeling propagation in high-power microwave devices

1999

Materials sciencebusiness.industryDielectric heatingElectrical engineeringElectrical and Electronic EngineeringMicrowave engineeringCondensed Matter PhysicsbusinessEngineering physicsAtomic and Molecular Physics and OpticsMicrowaveElectronic Optical and Magnetic MaterialsPower (physics)Microwave and Optical Technology Letters
researchProduct

Effect of driving method on the degradation of organic light emitting diodes

2003

Abstract Lifetime testing results are reported for organic light emitting diodes (OLEDs) having the structure ITO (anode)/ N , N ′-diphenyl- N , N ′-bis(3-methylphenyl)-1,1′-diphenyl-4,4′-diamine (TPD)/tris-(8-hydroxyquinoline)aluminum (AlQ)/Al (cathode) and operated using dc and pulsed waveforms for comparison. In ambient atmosphere non-encapsulated devices show a lifetime of about 70 h in pulsed operation at an initial luminance of 500 cd/m 2 , almost four times longer than in dc operation. A fast initial decay of luminance is observed for dc operation. It is most probably due to a combination of Joule heating and mobile ionic impurities migration within the OLED structure under the conti…

Materials sciencebusiness.industryMechanical EngineeringJoule effectMetals and AlloysCondensed Matter PhysicsCathodeElectronic Optical and Magnetic Materialslaw.inventionAnodeMechanics of MaterialslawElectric fieldMaterials ChemistryOLEDOptoelectronicsJoule heatingbusinessLight-emitting diodeVoltageSynthetic Metals
researchProduct

Microwave emission from ECR plasmas under conditions of two-frequency heating induced by kinetic instabilities

2018

Multiple frequency heating is one of the most effective techniques to improve the performances of ECR ion sources. It has been demonstrated that the appearance of the periodic ion beam current oscillations in ECRIS at high heating power and low magnetic field gradient is associated with kinetic plasma instabilities. Recently it was proven that one of the main features of multiple frequency heating is connected with stabilizing effect, namely the suppression of electron cyclotron instability in ECRIS plasmas. Due to this kind of stabilization it is possible to run the ion source in stable mode using higher total microwave power and thus to obtain better ion beam parameters. Unfortunately, ev…

Materials scienceta114ECR plasmasPlasmaplasmafysiikkamultiple frequency heatingKinetic energymikroaallotmicrowawesMicrowave emissionPhysics::Plasma Physicsplasma (kaasu)emissiontwo-frequency heatingAtomic physicsemissio (fysiikka)AIP Conference Proceedings
researchProduct

Do proctored online University exams in Covid-19 era affect final grades respect face-to-face exams?

2021

The Covid-19 pandemic forced universities to convert their traditional face-to-face exams to online exams with doubts as to whether student cheating or technical difficulties would affect their final grades. After taking three of these exams online, we considered comparing their grades with those of previous years on traditional exams. The average mark of the traditional exams before the pandemic was 6.95 over 10, while the average mark of the three exams carried out in the Covid-19 era is 6.64. The student's t test indicated that there are no significant differences between the two types of exams in the mean (p = 0.408), the median (p = 0.378), the range (p = 0.307), the minimum (p = 0.410…

Medical educationHigher educationCoronavirus disease 2019 (COVID-19)business.industryCheatingTeachingTestsEducational systemsHigher EducationAffect (psychology)Face-to-faceCheatingGradesLearningExamsOnlinebusinessPsychologyProctoringEducational systems
researchProduct