Search results for "Hemolysin Protein"

showing 10 items of 156 documents

Bacillus thuringiensis Vip3Aa Toxin Resistance in Heliothis virescens (Lepidoptera: Noctuidae)

2017

ABSTRACT Laboratory selection with Vip3Aa of a field-derived population of Heliothis virescens produced >2,040-fold resistance in 12 generations of selection. The Vip3Aa-selected (Vip-Sel)-resistant population showed little cross-resistance to Cry1Ab and no cross-resistance to Cry1Ac. Resistance was unstable after 15 generations without exposure to the toxin. F 1 reciprocal crosses between Vip3Aa-unselected (Vip-Unsel) and Vip-Sel insects indicated a strong paternal influence on the inheritance of resistance. Resistance ranged from almost completely recessive (mean degree of dominance [ h ] = 0.04 if the resistant parent was female) to incompletely dominant (mean h = 0.53 if the resistan…

0106 biological sciences0301 basic medicineMultifactorial Inheritancemedia_common.quotation_subjectPopulationInsectBiology01 natural sciencesApplied Microbiology and BiotechnologyInsecticide ResistanceLepidoptera genitaliaHemolysin Proteins03 medical and health sciencesBacterial ProteinsBacillus thuringiensisInvertebrate MicrobiologyAnimalsSelection GeneticeducationCrosses Geneticmedia_commonGeneticseducation.field_of_studyBacillus thuringiensis ToxinsEcologyHeliothis virescensfungibiology.organism_classificationSurvival AnalysisEndotoxinsLepidoptera010602 entomology030104 developmental biologyCry1AcPaternal InheritanceNoctuidaeBiological AssayPEST analysisFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Use of Bacillus thuringiensis toxins for control of the cotton pest earias insulana (Boisd.) (Lepidoptera: Noctuidae)

2006

ABSTRACT Thirteen of the most common lepidopteran-specific Cry proteins of Bacillus thuringiensis have been tested for their efficacy against newly hatched larvae of two populations of the spiny bollworm, Earias insulana . At a concentration of 100 μg of toxin per milliliter of artificial diet, six Cry toxins (Cry1Ca, Cry1Ea, Cry1Fa, Cry1Ja, Cry2Aa, and Cry2Ab) were not toxic at all. Cry1Aa, Cry1Ja, and Cry2Aa did not cause mortality but caused significant inhibition of growth. The other Cry toxins (Cry1Ab, Cry1Ac, Cry1Ba, Cry1Da, Cry1Ia, and Cry9Ca) were toxic to E. insulana larvae. The 50% lethal concentration values of these toxins ranged from 0.39 to 21.13 μg/ml (for Cry9Ca and Cry1Ia, …

Earias insulanaBacterial ToxinsPopulationBacillus thuringiensismedicine.disease_causeBinding CompetitiveApplied Microbiology and BiotechnologyMicrobiologyLepidoptera genitaliaHemolysin ProteinsBacterial ProteinsControl of the cotton pest earias insulanaBacillus thuringiensisBotanyInvertebrate MicrobiologymedicineAnimalsToxinsPest Control BiologicaleducationGossypiumeducation.field_of_studyBinding SitesBacillus thuringiensis ToxinsMicrovilliEcologybiologyToxinfungiPlants Genetically Modifiedbiology.organism_classificationEndotoxinsLepidopteraBollwormCry1AcLarvaNoctuidaeBiological AssayFood ScienceBiotechnology
researchProduct

Different binding sites for Bacillus thuringiensis Cry1Ba and Cry9Ca proteins in the European corn borer, Ostrinia nubilalis (Hübner).

2014

Binding studies using (125)I-Cry9Ca and biotinylated-Cry1Ba proteins showed the occurrence of independent binding sites for these proteins in Ostrinia nubilalis. Our results, along with previously available binding data, indicate that combinations of Cry1A or Cry1Fa proteins with Cry1Ba and/or Cry9Ca could be a good strategy for the resistance management of O. nubilalis.

GeneticsEuropean corn borerBinding SitesbiologyBacillus thuringiensis ToxinsfungiMothsbiology.organism_classificationZea maysOstriniaEndotoxinsInsecticide ResistanceHemolysin ProteinsBacterial ProteinsBacillus thuringiensisAnimalsBinding sitePest Control BiologicalEcology Evolution Behavior and SystematicsJournal of invertebrate pathology
researchProduct

Development and Characterization of Diamondback Moth Resistance to Transgenic Broccoli Expressing High Levels of Cry1C

2000

ABSTRACT A field-collected colony of the diamondback moth, Plutella xylostella , had 31-fold resistance to Cry1C protoxin of Bacillus thuringiensis . After 24 generations of selection with Cry1C protoxin and transgenic broccoli expressing a Cry1C protein, the resistance that developed was high enough that neonates of the resistant strain could complete their entire life cycle on transgenic broccoli expressing high levels of Cry1C. After 26 generations of selection, the resistance ratios of this strain to Cry1C protoxin were 12,400- and 63,100-fold, respectively, for the neonates and second instars by a leaf dip assay. The resistance remained stable until generation 38 (G38) under continuous…

Brush borderBacterial ToxinsBrassicaGenetically modified cropsBrassicaMothsApplied Microbiology and BiotechnologyInsecticide ResistanceHemolysin ProteinsBacterial ProteinsBacillus thuringiensisBotanyInvertebrate MicrobiologyAnimalsBinding sitePest Control BiologicalDiamondback mothEcologybiologyStrain (chemistry)Bacillus thuringiensis ToxinsMicrovilliParasporal bodyfungibiology.organism_classificationPlants Genetically ModifiedMolecular biologyEndotoxinsFood ScienceBiotechnology
researchProduct

Study of the bacillus thuringiensis Cry1Ia protein oligomerization promoted by midgut brush border membrane vesicles of lepidopteran and coleopteran …

2020

Bacillus thuringiensis (Bt) produces insecticidal proteins that are either secreted during the vegetative growth phase or accumulated in the crystal inclusions (Cry proteins) in the stationary phase. Cry1I proteins share the three domain (3D) structure typical of crystal proteins but are secreted to the media early in the stationary growth phase. In the generally accepted mode of action of 3D Cry proteins (sequential binding model), the formation of an oligomer (tetramer) has been described as a major step, necessary for pore formation and subsequent toxicity. To know if this could be extended to Cry1I proteins, the formation of Cry1Ia oligomers was studied by Western blot, after the incuba…

Leptinotarsa decemlineataBrush borderHealth Toxicology and MutagenesisBacillus thuringiensislcsh:MedicineSf21 cell lineOstrinia nubilalisToxicologyOligomer formationHemolysin Proteins<i>leptinotarsa decemlineata</i>03 medical and health sciencesWestern blotBacillus thuringiensisLobesia botranaSf9 CellsmedicineAnimalsProtein oligomerizationCry1AbIncubation<i>ostrinia nubilalis</i>030304 developmental biology0303 health sciencesBinding SitesBacillus thuringiensis ToxinsMicrovillimedicine.diagnostic_testbiology030306 microbiologyChemistryCommunicationVesiclelcsh:RfungiMembrane ProteinsMidgut<i>lobesia botrana</i>Trypsinbiology.organism_classificationColeopteraEndotoxinsLepidopteraBiochemistryBioassayProtein MultimerizationProtein Bindingmedicine.drug
researchProduct

Editorial for Special Issue: The Insecticidal Bacterial Toxins in Modern Agriculture.

2017

n/a

0301 basic medicineMicrobial toxinsBacillus thuringiensis Toxinsbusiness.industryHealth Toxicology and Mutagenesislcsh:RBacillus thuringiensislcsh:MedicineBiologyToxicologyPlants Genetically ModifiedBiotechnologyEndotoxins03 medical and health sciencesHemolysin Proteins030104 developmental biologyn/aEditorialBacterial ProteinsAgriculturebusinessPest Control BiologicalEcosystemToxins
researchProduct

Susceptibility of Grapholita molesta (Busck, 1916) to formulations of Bacillus thuringiensis, individual toxins and their mixtures.

2016

The Oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), is a major pest of fruit trees worldwide, such as peach and apple. Bacillus thuringiensis has been shown to be an efficient alternative to synthetic insecticides in the control of many agricultural pests. The objective of this study was to evaluate the effectiveness of B. thuringiensis individual toxins and their mixtures for the control of G. molesta. Bioassays were performed with Cry1Aa, Cry1Ac, Cry1Ca, Vip3Aa, Vip3Af and Vip3Ca, as well as with the commercial products DiPel® and XenTari®. The most active proteins were Vip3Aa and Cry1Aa, with LC50 values of 1.8 and 7.5ng/cm2, respectively. Vip3Ca was nontoxic to this …

0106 biological sciences0301 basic medicineTortricidaeInsecticidesMoths01 natural sciencesLepidoptera genitalia03 medical and health sciencesHemolysin ProteinsBacterial ProteinsBacillus thuringiensisBotanyBioassayAnimalsPest Control BiologicalEcology Evolution Behavior and SystematicsbiologyBacillus thuringiensis Toxinsfungibiology.organism_classificationGrapholita molestaEndotoxins010602 entomologyHorticulture030104 developmental biologyCry1AcPEST analysisAntagonismJournal of invertebrate pathology
researchProduct

Tribolium castaneum Apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity

2013

In this study, a 2.1-fold Apolipophorin-III mRNA up-regulation was found in Tribolium castaneum larvae challenged with Bacillus thuringiensis Cry3Ba spore-crystal mixture. Knockdown of Apolipophorin-III by RNAi resulted in increased T. castaneum larvae susceptibility following Cry3Ba spore-crystal treatment, demonstrating Apolipophorin-III involvement in insect defense against B. thuringiensis. We showed that Apolipophorin-III participates in T. castaneum immune response to B. thuringiensis activating the prophenoloxidase cascade since: (i) phenoloxidase activity significantly increased after Cry3Ba spore-crystal treatment compared to untreated or Cry1Ac spore-crystal treated larvae and (ii…

Insecticidesanimal structuresBacillus thuringiensisBiologyMicrobiologyHemolysin ProteinsImmune systemBacterial ProteinsRNA interferenceImmunityBacillus thuringiensisToxicity TestsBotanyAnimalsEcology Evolution Behavior and SystematicsTriboliumGene knockdownBacillus thuringiensis ToxinsfungiProphenoloxidasebiology.organism_classificationImmunity InnateEndotoxinsApolipoproteinsCry1AcLarvaRNA InterferenceApolipophorin IIIJournal of Invertebrate Pathology
researchProduct

A new gene superfamily of pathogen-response (repat) genes in Lepidoptera: Classification and expression analysis

2012

Repat (REsponse to PAThogens) genes were first identified in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae) in response to Bacillus thuringiensis and baculovirus exposure. Since then, additional repat gene homologs have been identified in different studies. In this study the comprehensive larval transcriptome from S. exigua was analyzed for the presence of novel repat-homolog sequences. These analyses revealed the presence of at least 46 repat genes in S. exigua, establishing a new gene superfamily in this species. Phylogenetic analysis and studies of conserved motifs in these hypothetical proteins have allowed their classification in two main classes, αREPAT and βREPAT. Studies o…

PhysiologyBacillus thuringiensisGenes InsectSpodopteradigestive systemBiochemistryTranscriptomeHemolysin ProteinsBacterial ProteinsBacillus thuringiensisGene expressionExiguaAnimalsMolecular BiologyGeneGeneticsBacillus thuringiensis ToxinsbiologyGene Expression ProfilingStem CellsfungiMidgutbiology.organism_classificationMolecular biologyEndotoxinsIntestinesLepidopteraGene expression profilingLarvaMetagenomeComparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
researchProduct

Bacillus thuringiensis Cry1Ac Toxin-Binding and Pore-Forming Activity in Brush Border Membrane Vesicles Prepared from Anterior and Posterior Midgut R…

2008

ABSTRACT It is generally accepted that Bacillus thuringiensis Cry toxins insert into the apical membrane of the larval midgut after binding to specific receptors, and there is evidence that the distribution of binding molecules along the midgut is not uniform. By use of the voltage-sensitive dye DiSC 3 (5) and 125 I-labeled Cry1Ac, we have measured the effect of Cry1Ac in terms of permeabilization capacity and of binding parameters on brush border membrane vesicles (BBMV) prepared from the anterior and the posterior regions of the larval midgut from two insect species, Manduca sexta and Helicoverpa armigera . The permeabilizing activity was significantly higher with BBMV from the posterior …

Cell Membrane PermeabilityBrush bordermedia_common.quotation_subjectBacterial ProteinInsectApplied Microbiology and BiotechnologyIodine RadioisotopeIodine RadioisotopesHemolysin ProteinsEndotoxinBacterial ProteinsManducaBacillus thuringiensisInvertebrate MicrobiologyAnimalsmedia_commonBacillus thuringiensis ToxinsMicrovilliEcologybiologyAnimalVesiclefungiMidgutHemolysin ProteinApical membraneAlkaline Phosphatasebiology.organism_classificationEndotoxinsEnzyme ActivationLepidopteraBiochemistryManduca sextaLarvaPotassiumBiophysicsManducaDigestive SystemProtein BindingFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct