Search results for "Heterojunction"
showing 10 items of 227 documents
ZnO nanorods covered with a TiO2 layer: simple sol–gel preparation, and optical, photocatalytic and photoelectrochemical properties
2015
In this work, composite core–shell ZnO/TiO2 materials were fabricated by deposition of TiO2 layers via a sol–gel method onto ZnO nanorods hydrothermally grown on an ITO electrode. Two approaches to the sol–gel procedure resulted in strongly different morphologies and thicknesses of the deposited TiO2 layer, as shown in electron microscopy studies. The decrease of the optical band gap energies of the ZnO/TiO2 composites by about 0.2–0.3 eV with respect to the TiO2 nanoparticles and ZnO nanorods was determined from UV-Vis diffuse reflectance spectra. The photocatalytic activities of the systems were determined by investigation of the decolorization of Methylene Blue (MB) in aqueous solution, …
<title>Functional models of electrochromic devices: cycling capacity and degradation</title>
1997
Electrical transfer and diffusion of ions and the irreversibility of ion and electron processes in heterojunctions are responsible for degradation of ionic devices. These processes for electrochromic devices (ECD) determine the cycling capacity and lifetime. The basic problem here is how to match the electrochemical parameters (including chemical potential) of heterojunction. The experiments had been carried out on ECD based on system: (phi) - -(phi) , where AAH is solid electrolyte based on antimony acid hydrates. The cycling capacity and degradation processes of ECD are investigated by electro-optical and electro-chemical spectroscopy. The analysis of experimental data are based on assump…
Giant Dzyaloshinskii-Moriya Interaction and Room-Temperature Nanoscale Skyrmions in CoFeB/MgO Heterostructures
2021
Magnetic skyrmions in heavy metal (HM)/CoFeB/MgO structures are of particular interest for skyrmion-based magnetic tunnel junction (MTJ) devices because of their reliable generation, stability and read-out through purely electrical methods. To optimize the properties, such as stability, a strong Dzyaloshinskii-Moriya interaction (DMI) is required at room temperature. Here, using first-principles calculations, we demonstrate that giant DMI can be obtained in Ir/CoFe structures with an Fe-terminated configuration. Moreover, Brillouin light scattering measurements show that indeed Ta/Ir/Co20Fe60B20/MgO thin films with perpendicular magnetic anisotropy exhibit a large DMI value (1.13 mJ/m2), wh…
Thin-Film Heterojunction by Carbon Nanotube Derivatives with Enhanced Solubility and Optical Properties
2012
THIN-FILM HETROJUNCTION BY CARBON NANOTUBE DERIVATIVES WITH ENHANCED SOLUBILITY AND OPTICAL PROPERTIES
2012
The combination of single-walled carbon nanotubes (SWNTs), characterized by high electron mobility, with p-type semiconducting polymers could lead to an overall improvement in the exciton dissociation and carrier extraction efficiencies in practical devices.1However, one of the main concern in the use of SWNTs, relates to the their scarce solubility. Chemical modification has been widely employed to increase the solubility of SWNTs, but usual reaction conditions limit such syntheses to a small scale with low productivity. Here, we employ SWNTs which have been functionalized with aromatic and heteroaromatic moieties via 1,3-dipolar cycloaddition and through diazotization reaction under batch…
ZnO films grown by MOCVD on GaAs substrates: Effects of a Zn buffer deposition on interface, structural and morphological properties
2009
Abstract Integration of ZnO with the well-developed GaAs technology presents several aspects that need to be previously analyzed and considered. The large lattice mismatch between ZnO and GaAs and its different crystallographic structure lead to many structural defects. In addition, their potential chemical reactivity is another source of complexity and an academic challenge. Recently some interesting contributions on this subject have been carried out by Liu and co-workers. As an additional step to the knowledge of the ZnO/GaAs heterostructure, we have deepened on the study of the morphology and orientation of ZnO thin films grown by atmospheric pressure metal-organic chemical vapour depos…
Cluster-model density functional study of a W–Cu(100) STM junction
1999
Abstract In this article, we investigate the electronic properties of different clusters modelling a tungsten tip, the Cu(1 0 0) surface and interacting W–Cu(1 0 0) systems in STM configuration. Electronic structure calculations are carried out within the LDA approximation of the Density Functional Theory (DFT). Both integrated (densities of states) and local properties (electronic density and electrostatic potential) are considered. The study is performed for top and hollow surface sites and two different tip–sample separations.
Optical and dielectric properties of MoO 3 nanosheets for van der Waals heterostructures
2021
Two-dimensional (2D) insulators are a key element in the design and fabrication of van der Waals heterostructures. They are vital as transparent dielectric spacers whose thickness can influence both the photonic, electronic, and optoelectronic properties of 2D devices. Simultaneously, they provide protection of the active layers in the heterostructure. For these critical roles, hexagonal Boron Nitride (hBN) is the dominant choice due to its large bandgap, atomic flatness, low defect density, and encapsulation properties. However, the broad catalogue of 2D insulators offers exciting opportunities to replace hBN in certain applications that require transparent thin layers with additional opti…
Identifying the origin of the nonmonotonic thickness dependence of spin-orbit torque and interfacial Dzyaloshinskii-Moriya interaction in a ferrimagn…
2020
Electrical manipulation of magnetism via spin-orbit torques (SOTs) promises efficient spintronic devices. In systems comprising magnetic insulators and heavy metals, SOTs have started to be investigated only recently, especially in systems with interfacial Dzyaloshinskii-Moriya interaction (iDMI). Here, we quantitatively study the SOT efficiency and iDMI in a series of gadolinium gallium garnet (GGG) / thulium iron garnet (TmIG) / platinum (Pt) heterostructures with varying TmIG and Pt thicknesses. We find that the non-monotonic SOT efficiency as a function of the magnetic layer thickness is not consistent with the 1/thickness dependence expected from a simple interfacial SOT mechanism. Mor…
Photoluminescence from strained InAs monolayers in GaAs under pressure
1994
bulk GaAs. At pressures above the band crossover two emission bands are observed. These bands, characterized by having negative pressure coefBcients, are attributed to the type-I transition between conduction-band X „and heavy-hole states of the InAs monolayer and the type-II transition &om X states in GaAs to InAs heavy-hole states. The results are interpreted in terms of tight-binding band-structure calculations for the strained InAs-monolayer — bulk-GaAs system. I. INTRODUCTION Highly strained InAs jGaAs heterostructures have recently attracted interest due to their unusual electronic and optical properties. ~ 4 Epitaxial isomorphic growth of InAs on GaAs can be achieved only up to a sma…