Search results for "Hierarchical Clustering"
showing 6 items of 56 documents
Exploring a large dataset : typical behavior of UHF signal propagation
2020
Radioverkon suunnittelua ja käyttöä varten täytyy radio aaltojen eteneminen ymmärtää hyvin. Tässä tutkimuksessa tutustutaan laajaan mittausaineistoon hetkellisiä tehoja maanlaajuisesta UHF verkosta. Spektrianalyysillä todettiin mitatussa tehossa olevan jaksollista vaihtelua taajuuksilla kerran ja kahdesti päivässä. Myös nopeampaa vaihtelua välillä 0:1 mHz ja 1:4 mHz todettiin 34% yhteyksistä. Hierarkisella ryhmittelyllä etsittiin tyypilliset mittausten arvojakaumat. Saaduissa arvojakaumien ryhmissä oli eri levyisiä vasemmalle tai oikealle vinoja tai symmetrisiä jakaumia. The design and operation of radio networks requires good understanding of radio propagation. This study explores a datase…
SparseHC: A Memory-efficient Online Hierarchical Clustering Algorithm
2014
Computing a hierarchical clustering of objects from a pairwise distance matrix is an important algorithmic kernel in computational science. Since the storage of this matrix requires quadratic space with respect to the number of objects, the design of memory-efficient approaches is of high importance to this research area. In this paper, we address this problem by presenting a memory-efficient online hierarchical clustering algorithm called SparseHC. SparseHC scans a sorted and possibly sparse distance matrix chunk-by-chunk. Meanwhile, a dendrogram is built by merging cluster pairs as and when the distance between them is determined to be the smallest among all remaining cluster pairs. The k…
Twister Tries
2015
Many commonly used data-mining techniques utilized across research fields perform poorly when used for large data sets. Sequential agglomerative hierarchical non-overlapping clustering is one technique for which the algorithms’ scaling properties prohibit clustering of a large amount of items. Besides the unfavorable time complexity of O(n 2 ), these algorithms have a space complexity of O(n 2 ), which can be reduced to O(n) if the time complexity is allowed to rise to O(n 2 log2 n). In this paper, we propose the use of locality-sensitive hashing combined with a novel data structure called twister tries to provide an approximate clustering for average linkage. Our approach requires only lin…
Cluster-Based RF Fingerprint Positioning Using LTE and WLAN Outdoor Signals
2015
In this paper we evaluate user-equipment (UE) positioning performance of three cluster-based RF fingerprinting methods using LTE and WLAN signals. Real-life LTE and WLAN data were collected for the evaluation purpose using consumer cellular-mobile handset utilizing ‘Nemo Handy’ drive test software tool. Test results of cluster-based methods were compared to the conventional grid-based RF fingerprinting. The cluster-based methods do not require grid-cell layout and training signature formation as compared to the gridbased method. They utilize LTE cell-ID searching technique to reduce the search space for clustering operation. Thus UE position estimation is done in short time with less comput…
An efficient cluster-based outdoor user positioning using LTE and WLAN signal strengths
2015
In this paper we propose a novel cluster-based RF fingerprinting method for outdoor user-equipment (UE) positioning using both LTE and WLAN signals. It uses a simple cost effective agglomerative hierarchical clustering with Davies-Bouldin criterion to select the optimal cluster number. The positioning method does not require training signature formation prior to UE position estimation phase. It is capable of reducing the search space for clustering operation by using LTE cell-ID searching criteria. This enables the method to estimate UE positioning in short time with less computational expense. To validate the cluster-based positioning real-time field measurements were collected using readi…
Scalable Hierarchical Clustering: Twister Tries with a Posteriori Trie Elimination
2015
Exact methods for Agglomerative Hierarchical Clustering (AHC) with average linkage do not scale well when the number of items to be clustered is large. The best known algorithms are characterized by quadratic complexity. This is a generally accepted fact and cannot be improved without using specifics of certain metric spaces. Twister tries is an algorithm that produces a dendrogram (i.e., Outcome of a hierarchical clustering) which resembles the one produced by AHC, while only needing linear space and time. However, twister tries are sensitive to rare, but still possible, hash evaluations. These might have a disastrous effect on the final outcome. We propose the use of a metaheuristic algor…