6533b7defe1ef96bd1275d2d

RESEARCH PRODUCT

SparseHC: A Memory-efficient Online Hierarchical Clustering Algorithm

Bertil SchmidtThuy-diem NguyenChee Keong Kwoh

subject

sparse matrixClustering high-dimensional dataTheoretical computer scienceonline algorithmsComputer scienceSingle-linkage clusteringComplete-linkage clusteringNearest-neighbor chain algorithmConsensus clusteringmemory-efficient clusteringCluster analysisk-medians clusteringGeneral Environmental ScienceSparse matrix:Engineering::Computer science and engineering [DRNTU]k-medoidsDendrogramConstrained clusteringHierarchical clusteringDistance matrixCanopy clustering algorithmGeneral Earth and Planetary SciencesFLAME clusteringHierarchical clustering of networkshierarchical clusteringAlgorithm

description

Computing a hierarchical clustering of objects from a pairwise distance matrix is an important algorithmic kernel in computational science. Since the storage of this matrix requires quadratic space with respect to the number of objects, the design of memory-efficient approaches is of high importance to this research area. In this paper, we address this problem by presenting a memory-efficient online hierarchical clustering algorithm called SparseHC. SparseHC scans a sorted and possibly sparse distance matrix chunk-by-chunk. Meanwhile, a dendrogram is built by merging cluster pairs as and when the distance between them is determined to be the smallest among all remaining cluster pairs. The key insight used is that for finding the cluster pair with the smallest distance, it is unnecessary to complete the computation of all cluster pairwise distances. Partial information can be utilized to calculate a lower bound on cluster pairwise distances that are subsequently used for cluster distance comparison. Our experimental results show that SparseHC achieves a linear empirical memory complexity, which is a significant improvement compared to existing algorithms. Published version

10.1016/j.procs.2014.05.001http://dx.doi.org/10.1016/j.procs.2014.05.001