0000000000423627

AUTHOR

Thuy-diem Nguyen

showing 5 related works from this author

SparseHC: A Memory-efficient Online Hierarchical Clustering Algorithm

2014

Computing a hierarchical clustering of objects from a pairwise distance matrix is an important algorithmic kernel in computational science. Since the storage of this matrix requires quadratic space with respect to the number of objects, the design of memory-efficient approaches is of high importance to this research area. In this paper, we address this problem by presenting a memory-efficient online hierarchical clustering algorithm called SparseHC. SparseHC scans a sorted and possibly sparse distance matrix chunk-by-chunk. Meanwhile, a dendrogram is built by merging cluster pairs as and when the distance between them is determined to be the smallest among all remaining cluster pairs. The k…

sparse matrixClustering high-dimensional dataTheoretical computer scienceonline algorithmsComputer scienceSingle-linkage clusteringComplete-linkage clusteringNearest-neighbor chain algorithmConsensus clusteringmemory-efficient clusteringCluster analysisk-medians clusteringGeneral Environmental ScienceSparse matrix:Engineering::Computer science and engineering [DRNTU]k-medoidsDendrogramConstrained clusteringHierarchical clusteringDistance matrixCanopy clustering algorithmGeneral Earth and Planetary SciencesFLAME clusteringHierarchical clustering of networkshierarchical clusteringAlgorithmProcedia Computer Science
researchProduct

Fast dendrogram-based OTU clustering using sequence embedding

2014

Biodiversity assessment is an important step in a metagenomic processing pipeline. The biodiversity of a microbial metagenome is often estimated by grouping its 16S rRNA reads into operational taxonomic units or OTUs. These metagenomic datasets are typically large and hence require effective yet accurate computational methods for processing.In this paper, we introduce a new hierarchical clustering method called CRiSPy-Embed which aims to produce high-quality clustering results at a low computational cost. We tackle two computational issues of the current OTU hierarchical clustering approach: (1) the compute-intensive sequence alignment operation for building the distance matrix and (2) the …

Brown clusteringCURE data clustering algorithmSingle-linkage clusteringCorrelation clusteringCanopy clustering algorithmData miningBiologyHierarchical clustering of networksCluster analysiscomputer.software_genrecomputerHierarchical clusteringProceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics
researchProduct

Efficient and Accurate OTU Clustering with GPU-Based Sequence Alignment and Dynamic Dendrogram Cutting.

2015

De novo clustering is a popular technique to perform taxonomic profiling of a microbial community by grouping 16S rRNA amplicon reads into operational taxonomic units (OTUs). In this work, we introduce a new dendrogram-based OTU clustering pipeline called CRiSPy. The key idea used in CRiSPy to improve clustering accuracy is the application of an anomaly detection technique to obtain a dynamic distance cutoff instead of using the de facto value of 97 percent sequence similarity as in most existing OTU clustering pipelines. This technique works by detecting an abrupt change in the merging heights of a dendrogram. To produce the output dendrograms, CRiSPy employs the OTU hierarchical clusterin…

Computer scienceCorrelation clusteringSingle-linkage clusteringMolecular Sequence DataMachine learningcomputer.software_genrePattern Recognition AutomatedCURE data clustering algorithmRNA Ribosomal 16SGeneticsComputer GraphicsCluster analysisBase Sequencebusiness.industryApplied MathematicsDendrogramHigh-Throughput Nucleotide SequencingPattern recognitionSignal Processing Computer-AssistedEquipment DesignHierarchical clusteringEquipment Failure AnalysisRNA BacterialCanopy clustering algorithmArtificial intelligenceHierarchical clustering of networksbusinesscomputerSequence AlignmentAlgorithmsBiotechnologyIEEE/ACM transactions on computational biology and bioinformatics
researchProduct

CRiSPy-CUDA: Computing Species Richness in 16S rRNA Pyrosequencing Datasets with CUDA

2011

Pyrosequencing technologies are frequently used for sequencing the 16S rRNA marker gene for metagenomic studies of microbial communities. Computing a pairwise genetic distance matrix from the produced reads is an important but highly time consuming task. In this paper, we present a parallelized tool (called CRiSPy) for scalable pairwise genetic distance matrix computation and clustering that is based on the processing pipeline of the popular ESPRIT software package. To achieve high computational efficiency, we have designed massively parallel CUDA algorithms for pairwise k-mer distance and pairwise genetic distance computation. We have also implemented a memory-efficient sparse matrix clust…

CUDADistance matrixComputer scienceMetagenomicsPipeline (computing)Pairwise comparisonParallel computingCluster analysisQuantitative Biology::GenomicsMassively parallelSparse matrix
researchProduct

Large-Scale Clustering of Short Reads for Metagenomics On GPUs

2013

Scale (ratio)Computer scienceMetagenomicsParallel computingCluster analysisComputational science
researchProduct