Search results for "High-Fat"
showing 10 items of 107 documents
Inhibition of endocannabinoid-degrading enzyme fatty acid amide hydrolase increases atherosclerotic plaque vulnerability in mice
2013
The role of endocannabinoids such as anandamide during atherogenesis remains largely unknown. Fatty acid amide hydrolase (FAAH) represents the key enzyme in anandamide degradation, and its inhibition is associated with subsequent higher levels of anandamide. Here, we tested whether selective inhibition of FAAH influences the progression of atherosclerosis in mice. Selective inhibition of FAAH using URB597 resulted in significantly increased plasma levels of anandamide compared to control, as assessed by mass spectrometry experiments in mice. Apolipoprotein E-deficient (ApoE(-/-)) mice were fed a high-fat, cholesterol-rich diet to induce atherosclerotic conditions. Simultaneously, mice recei…
GLP2: An underestimated signal for improving glycaemic control and insulin sensitivity
2016
Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide produced by intestinal enteroendocrine L-cells and by a discrete population of neurons in the brainstem, which projects mainly to the hypothalamus. The main biological actions of GLP2 are related to the regulation of energy absorption and maintenance of mucosal morphology, function and integrity of the intestine; however, recent experimental data suggest that GLP2 exerts beneficial effects on glucose metabolism, especially in conditions related to increased uptake of energy, such as obesity, at least in the animal model. Indeed, mice lacking GLP2 receptor selectively in hypothalamic neurons that express proopiomelanocortin show…
Early Low-Fat Diet Enriched With Linolenic Acid Reduces Liver Endocannabinoid Tone and Improves Late Glycemic Control After a High-Fat Diet Challenge…
2016
International audience; Evidence suggests that alterations of glucose and lipid homeostasis induced by obesity are associated with the elevation of endocannabinoid tone. The biosynthesis of the two main endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoyl-glycerol, which derive from arachidonic acid, is influenced by dietary fatty acids (FAs). We investigated whether exposure to n-3 FA at a young age may decrease tissue endocannabinoid levels and prevent metabolic disorders induced by a later high-fat diet (HFD) challenge. Three-week-old mice received a 5% lipid diet containing lard, lard plus safflower oil, or lard plus linseed oil for 10 weeks. Then, mice were challenged with a…
Chronic exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces an obesogenic effect in C57BL/6J mice fed a high fat diet
2017
IF 3.582; International audience; Contaminant involvement in the pathophysiology of obesity is widely recognized. It has been shown that low dose and chronic exposure to endocrine disruptor compounds (EDCs) potentiated diet- induced obesity. High and acute exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent organic pollutant (POP) and an EDC with anti-estrogenic property, causes wasting syndrome . However at lower doses, the TCDD metabolic effects remain poorly understood. We investigated the obesogenic effect during chronic exposure of TCDD at 1μg/kg body weight (bw)/week in adult C57BL/6J mice fed with a high fat diet (HFD) and exposed from 10 to 42 weeks old to TCDD or e…
Asperuloside Enhances Taste Perception and Prevents Weight Gain in High-Fat Fed Mice
2021
Asperuloside is an iridoid glycoside found in many medicinal plants that has produced promising anti-obesity results in animal models. In previous studies, three months of asperuloside administration reduced food intake, body weight, and adipose masses in rats consuming a high fat diet (HFD). However, the mechanisms by which asperuloside exerts its anti-obesity properties were not clarified. Here, we investigated homeostatic and nutrient-sensing mechanisms regulating food intake in mice consuming HFD. We confirmed the anti-obesity properties of asperuloside and, importantly, we identified some mechanisms that could be responsible for its therapeutic effect. Asperuloside reduced body weight …
Bile acid receptor TGR5 is critically involved in preference for dietary lipids and obesity
2020
International audience; We investigated the implication of Takeda G protein-coupled receptor 5 (TGR5) in fat preference and fat sensing in taste bud cells (TBC) in C57BL/6 wild-type (WT) and TGR5 knock out (TGR5-/-) male mice maintained for 20 weeks on a high-fat diet (HFD). We also assessed the implication of TGR5 single nucleotide polymorphism (SNP) in young obese humans. The high-fat diet (HFD)-fed TGR5-/- mice were more obese, marked with higher liver weight, lipidemia and steatosis than WT obese mice. The TGR5-/- obese mice exhibited high daily food/energy intake, fat mass and inflammatory status. WT obese mice lost the preference for dietary fat, but the TGR5-/- obese mice exhibited n…
Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbit
2017
Metabolic syndrome (MetS) has become one of the main concerns for public health because of its link to cardiovascular disease. Murine models have been used to study the effect of MetS on the cardiovascular system, but they have limitations for studying cardiac electrophysiology. In contrast, the rabbit cardiac electrophysiology is similar to human, but a detailed characterization of the different components of MetS in this animal is still needed. Our objective was to develop and characterize a diet-induced experimental model of MetS that allows the study of cardiovascular remodeling and arrhythmogenesis. Male NZW rabbits were assigned to control (n = 15) or MetS group (n = 16), fed during 2…
Temporal and tissue-specific requirements for T-lymphocyte IL-6 signalling in obesity-associated inflammation and insulin resistance
2017
Low-grade inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells. Interleukin-6 (IL-6) is a crucial regulator of T cells and is increased in obesity. Here we report that classical IL-6 signalling in T cells promotes inflammation and insulin resistance during the first 8 weeks on a high-fat diet (HFD), but becomes dispensable at later stages (after 16 weeks). Mice with T cell-specific deficiency of IL-6 receptor-α (IL-6RαT-KO) exposed to a HFD display improved glucose tolerance, insulin sensitivity and inflammation in liver and EWAT after 8 weeks. However, after 16 weeks, insulin resistance in IL-6RαT-KO epididymal white adipose tissue (EW…
ERK1 and ERK2 activation modulates diet-induced obesity in mice
2017
IF 3.112; International audience; Obesity is a worldwide problem, and dietary lipids play an important role in its pathogenesis. Recently, Erk1 knock-out (ERK1(-/-)) mice have been shown to exhibit low preference for dietary fatty acids. Hence, we maintained Erk1(-/-) mice on a high-fat diet (HFD) to assess the implication of this mitogen-activated protein (MAP) kinase in obesity. The Erk1(-/-) mice, fed the HFD, were more obese than wild-type (WT) animals, fed the same diet. Erk1(-/-) obese mice gained more fat and liver mass than WT obese animals. No difference was observed in daily food and energy intake in HFD-fed both group of animals. However, feed efficiency was higher in Erk1(-/-) t…
Evidence for hypothalamic ketone bodies sensing: impact on food intake and peripheral metabolic responses in mice
2016
Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain keton…