Search results for "High-temperature"

showing 10 items of 79 documents

Microscopy studies of the surface of high-temperature superconductor films

1997

The surface morphology is studied by use of optical and electron microscopes with respect to production regime (rate and temperature of crystallization) of the 50 - 125 micrometer thick doped YBa 2 Cu 3 O 7 films obtained by Stokes sedimentation on SrTiO 3 ceramic substrate (size 20 mm by 5 mm by 0.5 mm) and firing in air or oxygen following the MTG procedure, performed in the gradient tube furnace. Evolution of thick film structure with regard to temperature and cooling rate is studied.

SuperconductivityHigh-temperature superconductivityMaterials scienceDopingAnalytical chemistrylaw.inventionMicrometrelawvisual_artMicroscopyvisual_art.visual_art_mediumTube furnaceCeramicCrystallizationSPIE Proceedings
researchProduct

Microscopic studies of surface morphology of high temperature superconductor thick layers

2004

Abstract The surface morphology and structure of the YBa2Cu3O7−δ superconductor ayers prepared on passive ceramic and single crystal substrates is studied by electron microscopy. The layers reveal features of structure formation.

SuperconductivityHigh-temperature superconductivityMaterials scienceMorphology (linguistics)Structure formationEnergy Engineering and Power TechnologyCondensed Matter PhysicsMicrostructureElectronic Optical and Magnetic Materialslaw.inventionlawvisual_artvisual_art.visual_art_mediumCeramicElectrical and Electronic EngineeringComposite materialElectron microscopeSingle crystalPhysica C: Superconductivity
researchProduct

Heavy ion induced columnar defects: a sensitive probe for the 2D/3D behaviour of vortex matter in high-temperature superconductors

1998

Abstract Heavy ion irradiation is used to create columnar defects in high-temperature superconductors (HTS). The heavy ion induced defects are not only very well controlled in shape and density, but also in the direction of the tracks with respect to the crystallographic c-axis. Pinning of the flux lines as a function of magnetic field orientation then becomes dependent on vortex dimensionality. The two-dimensional (2D)/three-dimensional (3D) behaviour of flux lines was investigated in the highly anisotropic Bi-based superconducting oxide. Results obtained from transport current measurements with epitaxial films, measurements with small single crystals in flux transformer geometry and muon …

SuperconductivityNuclear and High Energy PhysicsMaterials scienceFlux pinningHigh-temperature superconductivityCondensed matter physicsOxideMuon spin spectroscopyVortexlaw.inventionMagnetic fieldchemistry.chemical_compoundchemistrylawCondensed Matter::SuperconductivityAnisotropyInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Flat Bands as a Route to High-Temperature Superconductivity in Graphite

2016

Superconductivity is traditionally viewed as a low-temperature phenomenon. Within the BCS theory this is understood to result from the fact that the pairing of electrons takes place only close to the usually two-dimensional Fermi surface residing at a finite chemical potential. Because of this, the critical temperature is exponentially suppressed compared to the microscopic energy scales. On the other hand, pairing electrons around a dispersionless (flat) energy band leads to very strong superconductivity, with a mean-field critical temperature linearly proportional to the microscopic coupling constant. The prize to be paid is that flat bands can probably be generated only on surfaces and i…

SuperconductivityPhysicsCoupling constantHigh-temperature superconductivityCondensed matter physicsFermi surface02 engineering and technologyBCS theory021001 nanoscience & nanotechnology01 natural sciences7. Clean energylaw.inventionlawCondensed Matter::SuperconductivityTopological insulatorPairing0103 physical sciences010306 general physics0210 nano-technologyTopological quantum number
researchProduct

Landau damping in high-temperature superconductors

1995

We investigate the decay of a phonon into single-electron excitations in the cuprate superconductors. In a clean crystal the screening of the longitudinal phonon field cancels singularity of the Landau damping threshold and makes it experimentally unobservable. In a dirty metal the phase volume of the electrons involved in damping is small, which reduces the probability of the phonon decay. However, in this case the observation of dependence between the phonon linewidth and light penetration depth is more favorable than in the clean metal because the damping has no threshold.

SuperconductivityPhysicsHigh-temperature superconductivityField (physics)Condensed matter physicsPhononElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effectlaw.inventionLaser linewidthlawCondensed Matter::SuperconductivityCondensed Matter::Strongly Correlated ElectronsCuprateLandau dampingPhysical Review B
researchProduct

Thin film growth of Fe-based superconductors: from fundamental properties to functional devices. A comparative review.

2014

Fe-based superconductors bridge a gap between MgB2 and the cuprate high temperature superconductors as they exhibit multiband character and transition temperatures up to around 55 K. Investigating Fe-based superconductors thus promises answers to fundamental questions concerning the Cooper pairing mechanism, competition between magnetic and superconducting phases, and a wide variety of electronic correlation effects. The question addressed in this review is, however, is this new class of superconductors also a promising candidate for technical applications? Superconducting film-based technologies range from high-current and high-field applications for energy production and storage to sensor…

SuperconductivityPhysicsHigh-temperature superconductivitylawCondensed Matter::SuperconductivityGeneral Physics and AstronomyNanotechnologyFe basedThin filmKey issueslaw.inventionReports on progress in physics. Physical Society (Great Britain)
researchProduct

Prediction of pressure-induced superconductivity in the novel ternary system ScCaH2n (n = 1–6)

2021

Hydrogen-rich systems are currently thought to constitute the most promising potential high-temperature superconductor materials. Here, the high-pressure structure and superconductivity of the ternary hydrogen-rich system ScCaH2n (n = 1–6) are systematically investigated by using the prediction method of particle swarm optimization structure combined with first-principles calculations. As n increases, the electron local function (ELF) indicates that the hydrogen atoms in this system exhibit different behaviors corresponding to single H atoms, H2 molecules, graphene-like layers and, ultimately, H clathrate cages. The electron phonon coupling (EPC) calculation shows that the superconducting t…

SuperconductivityTernary numeral systemHigh-temperature superconductivityMaterials scienceHydrogenFermi levelchemistry.chemical_element02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnology01 natural scienceslaw.inventionsymbols.namesakechemistryChemical physicslaw0103 physical sciencesMaterials ChemistrysymbolsDensity of statesMolecule010306 general physics0210 nano-technologyTernary operationJournal of Materials Chemistry C
researchProduct

The magnet of the scattering and neutrino detector for the SHiP experiment at CERN

2019

The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.

TechnologyPhysics - Instrumentation and Detectorswigglers and undulators)magnet: designPermanent magnet devicesPhysics::Instrumentation and Detectorsengineering01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingradiation hardened magnetsSubatomär fysik0302 clinical medicineDipole magnetSubatomic PhysicsNeutrino detectorsDetectors and Experimental TechniquesInstruments & InstrumentationInstrumentationphysics.ins-detAcceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators)Mathematical PhysicsPhysics02 Physical SciencesLarge Hadron ColliderInstrumentation and Detectors (physics.ins-det)magnet: technologyNuclear & Particles Physicsbending magnetneutrino: detectorNeutrino detectornormal-conductingAcceleration cavities and magnets superconducting (high-temperature superconductorproposed experimentCERN LabRadiation hardened magnetsFOS: Physical sciencesNormal-conductingAccelerator Physics and InstrumentationNuclear physics03 medical and health sciences0103 physical sciencespermanent magnet devices[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Wigglers and undulators)normal-conducting magnetsScience & Technology010308 nuclear & particles physicsScatteringLarge detector systems for particle and astroparticle physicsAcceleratorfysik och instrumenteringLarge detector systems for particle physicsHigh temperature superconductors Neutrons Permanent magnets Ships Superconducting magnets Wigglers Astroparticle physics Comprehensive designs Massive structures Neutrino detectors Normal-conducting Radiation-hardened Ship experiments Technical challenges Particle detectorsVolume (thermodynamics)MagnetAcceleration cavities and magnets superconducting (high-temperature superconductor; Large detector systems for particle and astroparticle physics; Neutrino detectors; Normal-conducting; Permanent magnet devices; Radiation hardened magnets; Wigglers and undulators)High Energy Physics::Experimentneutrino detectors
researchProduct

The effect of feedstock origin and temperature on the structure and reactivity of char from pyrolysis at 1300–2800 °C

2018

This study reports the effect of feedstock origin, residence time, and heat treatment temperature on CO2 and O2 reactivities, nanostructure and carbon chemistry of chars prepared at 1300, 1600, 2400, and 2800 °C in a slow pyrolysis reactor. The structure of char was characterized by transmission electron microscopy and Raman spectroscopy. The CO2 and O2 reactivity of char was investigated by thermogravimetric analysis. Results showed that the ash composition and residence time influence the char reactivity less than the heat treatment temperature. The heat treatment temperature and co-pyrolysis of pinewood char with biooil decreased the CO2 reactivity, approaching that of metallurgical coke…

Thermogravimetric analysisBiooilHigh-temperature pyrolysis020209 energyGeneral Chemical EngineeringEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technologyRaw materialsymbols.namesake020401 chemical engineeringMaschinenbau0202 electrical engineering electronic engineering information engineeringReactivity (chemistry)Char0204 chemical engineeringOrganic ChemistryReactivityMetallurgical cokeFuel TechnologychemistryChemical engineeringTransmission electron microscopyBiomass charsymbolsRaman spectroscopyCarbonPyrolysis
researchProduct

Characterization and reactivity of charcoal from high temperature pyrolysis (800-1600°C)

2019

This study presents the effect of wood origin and heat treatment temperature on the CO2 reactivity, nanostructure and carbon chemistry of chars prepared at 800, 1200, and 1600 °C in slow pyrolysis reactors. The structure of charcoal was characterized by transmission electron microscopy, Raman spectroscopy, mercury intrusion porosimetry and N2 adsorption. The CO2 reactivity of char was investigated by thermogravimetric analysis. Results showed that spruce and oak chars have similar reactivity at all heat treatment temperatures. The oak char prepared at 1600 °C contained long and flat graphene layers and interplanar distance that is similar to graphite and thus, was more ordered t…

Thermogravimetric analysisMaterials science020209 energyGeneral Chemical EngineeringChemieEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technologyAdsorption020401 chemical engineering0202 electrical engineering electronic engineering information engineeringReactivity (chemistry)CharGraphite0204 chemical engineeringCharcoallow heating rateOrganic Chemistrynon-graphitizing carbonCO2 reactivityFuel TechnologyChemical engineeringchemistryhigh-temperature pyrolysisvisual_artvisual_art.visual_art_mediumPyrolysisCarboncharcoal
researchProduct