Search results for "High-throughput"
showing 10 items of 292 documents
Genetic justification of severe COVID-19 using a rigorous algorithm
2021
Recent studies suggest excessive complement activation in severe coronavirus disease-19 (COVID-19). The latter shares common characteristics with complement-mediated thrombotic microangiopathy (TMA). We hypothesized that genetic susceptibility would be evident in patients with severe COVID-19 (similar to TMA) and associated with disease severity. We analyzed genetic and clinical data from 97 patients hospitalized for COVID-19. Through targeted next-generation-sequencing we found an ADAMTS13 variant in 49 patients, along with two risk factor variants (C3, 21 patients; CFH,34 patients). 31 (32%) patients had a combination of these, which was independently associated with ICU hospitalization (…
Association of metformin administration with gut microbiome dysbiosis in healthy volunteers
2018
Background Metformin is a widely used first-line drug for treatment of type 2 diabetes. Despite its advantages, metformin has variable therapeutic effects, contraindications, and side effects. Here, for the very first time, we investigate the short-term effect of metformin on the composition of healthy human gut microbiota. Methods We used an exploratory longitudinal study design in which the first sample from an individual was the control for further samples. Eighteen healthy individuals were treated with metformin (2 × 850 mg) for 7 days. Stool samples were collected at three time points: prior to administration, 24 hours and 7 days after metformin administration. Taxonomic composition of…
Hepatitis C virus intrinsic molecular determinants may contribute to the development of cholestatic hepatitis after liver transplantation
2018
Cholestatic hepatitis C (CHC) is a severe form of hepatitis C virus (HCV) infection recurrence that leads to high graft loss rates early after liver transplantation (LT). To investigate the pathogenic mechanisms of CHC, we analysed HCV quasispecies in CHC patients compared to a control group (mild hepatitis C recurrence) by deep pyrosequencing. At the time of LT, NS5B quasispecies complexity was similar between the two groups but, after LT, it decreased more sharply in CHC patients than in the control group. Interestingly, the major variant before LT propagated efficiently and remained as the dominant sequence after LT in 62 % of CHC patients versus 11 % of controls (P=0.031). Sequence anal…
Experimental conditions improving in-solution target enrichment for ancient DNA.
2016
High-throughput sequencing has dramatically fostered ancient DNA research in recent years. Shotgun sequencing, however, does not necessarily appear as the best-suited approach due to the extensive contamination of samples with exogenous environmental microbial DNA. DNA capture-enrichment methods represent cost-effective alternatives that increase the sequencing focus on the endogenous fraction, whether it is from mitochondrial or nuclear genomes, or parts thereof. Here, we explored experimental parameters that could impact the efficacy of MYbaits in-solution capture assays of ~5000 nuclear loci or the whole genome. We found that varying quantities of the starting probes had only moderate ef…
The diagnosis of chronic endometritis in infertile asymptomatic women: a comparative study of histology, microbial cultures, hysteroscopy, and molecu…
2017
Background Chronic endometritis is a persistent inflammation of the endometrial mucosa caused by bacterial pathogens such as Enterobacteriaceae, Enterococcus, Streptococcus, Staphylococcus, Mycoplasma, and Ureaplasma. Although chronic endometritis can be asymptomatic, it is found in up to 40% of infertile patients and is responsible for repeated implantation failure and recurrent miscarriage. Diagnosis of chronic endometritis is based on hysteroscopy of the uterine cavity, endometrial biopsy with plasma cells being identified histologically, while specific treatment is determined based on microbial culture. However, not all microorganisms implicated are easily or readily culturable needing …
High-throughput sequencing (HTS) for the analysis of viral populations
2020
The development of High-Throughput Sequencing (HTS) technologies is having a major impact on the genomic analysis of viral populations. Current HTS platforms can capture nucleic acid variation across millions of genes for both selected amplicons and full viral genomes. HTS has already facilitated the discovery of new viruses, hinted new taxonomic classifications and provided a deeper and broader understanding of their diversity, population and genetic structure. Hence, HTS has already replaced standard Sanger sequencing in basic and applied research fields, but the next step is its implementation as a routine technology for the analysis of viruses in clinical settings. The most likely appli…
Highly heterogeneous mutation rates in the hepatitis C virus genome.
2016
Spontaneous mutations are the ultimate source of genetic variation and have a prominent role in evolution. RNA viruses such as hepatitis C virus (HCV) have extremely high mutation rates, but these rates have been inferred from a minute fraction of genome sites, limiting our view of how RNA viruses create diversity. Here, by applying high-fidelity ultradeep sequencing to a modified replicon system, we scored >15,000 spontaneous mutations, encompassing more than 90% of the HCV genome. This revealed >1,000-fold differences in mutability across genome sites, with extreme variations even between adjacent nucleotides. We identify base composition, the presence of high- and low-mutation clusters a…
Identification of virulence factors and antibiotic resistance markers using bacterial genomics.
2016
International audience; In recent years, the number of multidrug-resistant bacteria has increased rapidly and several epidemics were signaled in different regions of the world. Faced with this situation that presents a major global public health concern, the development and the use of new and rapid technologies is more than urgent. The use of the next-generation sequencing platforms by microbiologists and infectious disease specialists has allowed great progress in the medical field. Here, we review the usefulness of whole-genome sequencing for the detection of virulence and antibiotic resistance associated genes.
Extracellular non-coding RNA signatures of the metacestode stage of Echinococcus multilocularis
2020
Extracellular RNAs (ex-RNAs) are secreted by cells through different means that may involve association with proteins, lipoproteins or extracellular vesicles (EV). In the context of parasitism, ex-RNAs represent new and exciting communication intermediaries with promising potential as novel biomarkers. In the last years, it was shown that helminth parasites secrete ex-RNAs, however, most work mainly focused on RNA secretion mediated by EV. Ex-RNA study is of special interest in those helminth infections that still lack biomarkers for early and/or follow-up diagnosis, such as echinococcosis, a neglected zoonotic disease caused by cestodes of the genus Echinococcus. In this work, we have char…
Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing
2017
[EN] Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplastreplicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear pot…