Search results for "Histone Deacetylase"
showing 10 items of 152 documents
Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking
2013
Abstract Background Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS), while glycerol extends it. Results Different age-related gene classes have been modified by deletion or o…
Histone Deacetylase Inhibitors in the Treatment of Hematological Malignancies and Solid Tumors
2010
The human genome is epigenetically organized through a series of modifications to the histone proteins that interact with the DNA. In cancer, many of the proteins that regulate these modifications can be altered in both function and expression. One example of this is the family of histone deacetylases (HDACs), which as their name implies remove acetyl groups from the histone proteins, allowing for more condensed nucleosomal structure. HDACs have increased expression in cancer and are also believed to promote carcinogenesis through the acetylation and interaction with key transcriptional regulators. Given this, small molecule histone deacetylases inhibitors have been identified and developed…
A chromatin-associated histone deacetylase from pea (Pisum sativum)
1991
Abstract A histone deacetylase activity has been found in preparation of chromatin from pea (Pisum sativum) embryonic axes. This activity readily deacetylates free histones and is somewhat specific for H2A and H2B; this property and its chromatographic behaviour allowed us to identify the enzyme with the previously described histone deacetylase HD2 (Sendra et al., Plant Mol. Biol., 11 (1988) 857). HD2 is only loosely associated to chromatin but the enzymatic activity is enhanced when chromatin adopts a folded conformation. Polyamines and divalent cations activate the enzyme, probably due to their effect on chromatin folding.
Distinct Site Specificity of Two Pea Histone Deacetylase Complexes
2001
We report on the site specificity of two intact pea histone deacetylase complexes. HD1 deacetylates lysines 5 and 16 of H4 in the order K16 > K5, while in the case of H3 the preferred order is K4 >> K18 approximately K9. The specificity of the HD2 complex is markedly different. The preferred residues in H4 are K8 approximately K5 > K16, while in H3 deacetylation, the complex HD2 prefers sites 4 and 18. To obtain these results, we have used a novel procedure based on the SPOT technique, a method to synthesize peptides on membrane supports. Different sets of membranes with sequentially overlapping histone peptides containing acetylated lysines in the sites corresponding to all in vivo acetyla…
Characterization of pea histone deacetylases
1988
The present paper is the first report on histone deacetylases from plants. Three enzyme fractions with histone deacetylase activity (HD0, HD1 and HD2) have been partially purified from pea (Pisum sativum) embryonic axes. They deacetylate biologically acetylated chicken histones and, to a lesser extent, chemically acetylated histones, this being a criterion of their true histone deacetylase nature. The three enzymes are able to accept nucleosomes as substrates. HD1 is not inhibited by n-butyrate up to 50 mM, whereas HD0 and HD2 are only slightly inhibited, thereby establishing a clear difference to animal histone deacetylases. The three activities are inhibited by acetate, Cu(2+) and Zn(2+) …
Protein phosphatases and chromatin modifying complexes in the inflammatory cascade in acute pancreatitis
2010
Acute pancreatitis is an inflammation of the pancreas that may lead to systemic inflammatory response syndrome and death due to multiple organ failure. Acinar cells, together with leukocytes, trigger the inflammatory cascade in response to local damage of the pancreas. Amplification of the inflammatory cascade requires up-regulation of pro-inflammatory cytokines and this process is mediated not only by nuclear factor κB but also by chromatin modifying complexes and chromatin remodeling. Among the different families of histone acetyltransferases, the p300/CBP family seems to be particularly associated with the inflammatory process. cAMP activates gene expression via the cAMP-responsive eleme…
Post-translational modifications of hsp60 and its extracellular release via exosomes are induced by the histone deacetylase inhibitor (HDACi) SAHA in…
2015
The chaperonin Hsp60 has multiple functions, among which that of supporting the growth of some type of tumours (1). HDACi (histone-deacetylase inhibitors) are drugs that regulate gene expression via modulation of epigenetic mechanisms, and induce tumor-cell death (2). Here, we show that in the tumor cells H292 the HDACi SAHA decreases the intracellular level of Hps60 and promotes its extracellular trafficking by exosomal vesicles. SAHA caused a time- and dose-dependent decrease in cell viability with a G/2M cell-cycle arrest at 24 h and cell death at 48 h. These effects were accompanied by production of reactive oxygen species and mitochondrial membrane-potential dissipation. The marked dec…
Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis
2013
To access publisher's full text version of this article click on the hyperlink at the bottom of the page Primary sclerosing cholangitis (PSC) is a severe liver disease of unknown etiology leading to fibrotic destruction of the bile ducts and ultimately to the need for liver transplantation. We compared 3,789 PSC cases of European ancestry to 25,079 population controls across 130,422 SNPs genotyped using the Immunochip. We identified 12 genome-wide significant associations outside the human leukocyte antigen (HLA) complex, 9 of which were new, increasing the number of known PSC risk loci to 16. Despite comorbidity with inflammatory bowel disease (IBD) in 72% of the cases, 6 of the 12 loci sh…
Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis
2013
The mechanisms by which deregulated nuclear factor erythroid-2–related factor 2 (NRF2) and kelch-like ECH-associated protein 1 (KEAP1) signaling promote cellular proliferation and tumorigenesis are poorly understood. Using an integrated genomics and 13C-based targeted tracer fate association (TTFA) study, we found that NRF2 regulates miR-1 and miR-206 to direct carbon flux toward the pentose phosphate pathway (PPP) and the tricarboxylic acid (TCA) cycle, reprogramming glucose metabolism. Sustained activation of NRF2 signaling in cancer cells attenuated miR-1 and miR-206 expression, leading to enhanced expression of PPP genes. Conversely, overexpression of miR-1 and miR-206 decreased the exp…
Inhibition of histone deacetylation rescues phenotype in a mouse model of Birk-Barel intellectual disability syndrome
2020
Mutations in the actively expressed, maternal allele of the imprinted KCNK9 gene cause Birk-Barel intellectual disability syndrome (BBIDS). Using a BBIDS mouse model, we identify here a partial rescue of the BBIDS-like behavioral and neuronal phenotypes mediated via residual expression from the paternal Kcnk9 (Kcnk9pat) allele. We further demonstrate that the second-generation HDAC inhibitor CI-994 induces enhanced expression from the paternally silenced Kcnk9 allele and leads to a full rescue of the behavioral phenotype suggesting CI-994 as a promising molecule for BBIDS therapy. Thus, these findings suggest a potential approach to improve cognitive dysfunction in a mouse model of an impri…