Search results for "Home"
showing 10 items of 3036 documents
Tc17 biology and function: Novel concepts
2020
Research over the past years has provided increasing understanding about IL-17-producing CD8+ T cells termed Tc17 or IL-17+ CD8+ T cells, their distribution and role in a range of diverse immune processes. These comprise resistance to pathogens and tissue homeostasis, but also contribution to autoimmunity and cancer, as well as involvement in gut inflammation, lung diseases and graft-versus-host-disease. Tc17 cells are regulated by unique differentiation mechanisms distinguishing them from other IL-17-producing T cells, including Th17, mucosal-associated invariant T cells, and γδ17 T cells, thus ensuring their specific function in immune responses. Here, we review recent advances in underst…
E-Cadherin is Dispensable to Maintain Langerhans Cells in the Epidermis.
2019
The cell adhesion molecule E-cadherin is a major component of adherens junctions and marks Langerhans cells (LC), the only dendritic cell (DC) population of the epidermis. LC form a dense network and attach themselves to the surrounding keratinocytes via homophilic E-cadherin binding. LC activation, mobilization, and migration require a reduction in LC E-cadherin expression. To determine whether E-cadherin plays a role in regulating LC homeostasis and function, we generated CD11c-specific E-cadherin knockout mice (CD11c-Ecaddel). In the absence of E-cadherin−mediated cell adhesion, LC numbers remained stable and similar as in control mice, even in aged animals. Intriguingly, E-cadherin−defi…
Differentiation and characterization of rat adipose tissue mesenchymal stem cells into endothelial-like cells
2018
In this study, mesenchymal stem cells were isolated from rat adipose tissue (AD-MSCs) to characterize and differentiate them into endothelial-like cells. AD-MSCs were isolated by mechanical and enzymatic treatments, and their identity was verified by colony-forming units (CFU) test and by differentiation into cells of mesodermal lineages. The endothelial differentiation was induced by plating another aliquot of cells in EGM-2 medium, enriched with specific endothelial growth factors. Five subcultures were performed. The expression of stemness genes (OCT4, SOX2 and NANOG) was investigated. The presence of CD90 and the absence of the CD45 were evaluated by flow cytometry. The endothelial-like…
Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Dro…
2016
During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to i…
Progressive derivation of serially homologous neuroblast lineages in the gnathal CNS of Drosophila
2018
Along the anterior-posterior axis the central nervous system is subdivided into segmental units (neuromeres) the composition of which is adapted to their region-specific functional requirements. In Drosophila melanogaster each neuromere is formed by a specific set of identified neural stem cells (neuroblasts, NBs). In the thoracic and anterior abdominal region of the embryonic ventral nerve cord segmental sets of NBs resemble the ground state (2nd thoracic segment, which does not require input of homeotic genes), and serial (segmental) homologs generate similar types of lineages. The three gnathal head segments form a transitional zone between the brain and the ventral nerve cord. It has be…
Mg2+ homeostasis and transport in cyanobacteria – at the crossroads of bacterial and chloroplast Mg2+ import
2018
Abstract Magnesium cation (Mg2+) is the most abundant divalent cation in living cells, where it is required for various intracellular functions. In chloroplasts and cyanobacteria, established photosynthetic model systems, Mg2+ is the central ion in chlorophylls, and Mg2+ flux across the thylakoid membrane is required for counterbalancing the light-induced generation of a ΔpH across the thylakoid membrane. Yet, not much is known about Mg2+ homoeostasis, transport and distribution within cyanobacteria. However, Mg2+ transport across membranes has been studied in non-photosynthetic bacteria, and first observations and findings are reported for chloroplasts. Cyanobacterial cytoplasmic membranes…
Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidati…
2019
Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal cells selected for full adaptation and resistance to oxidative stress induced by hydrogen peroxide (oxidative stress-resistant cells, OxSR cells) showed a massive increase in the expression of components of the cellular autophagic-lysosomal network and a significantly higher overall autophagic activity. A comparative expression analysis revealed that distinct key regulators of autophagy are upregu…
Harnessing mechanosensation in next generation cardiovascular tissue engineering
2020
The ability of the cells to sense mechanical cues is an integral component of ”social” cell behavior inside tissues with a complex architecture. Through ”mechanosensation” cells are in fact able to decrypt motion, geometries and physical information of surrounding cells and extracellular matrices by activating intracellular pathways converging onto gene expression circuitries controlling cell and tissue homeostasis. Additionally, only recently cell mechanosensation has been integrated systematically as a crucial element in tissue pathophysiology. In the present review, we highlight some of the current efforts to assess the relevance of mechanical sensing into pathology modeling and manufact…
The good and bad of targeting cancer-associated extracellular matrix
2017
The maintenance of tissue homeostasis requires extracellular matrix (ECM) remodeling. Immune cells actively participate in regenerating damaged tissues contributing to ECM deposition and shaping. Dysregulated ECM deposition characterizes fibrotic diseases and cancer stromatogenesis, where a chronic inflammatory state sustains the ECM increase. In cancer, the ECM fosters several steps of tumor progression, providing pro-survival and proliferative signals, promoting tumor cell dissemination via collagen fibers or acting as a barrier to impede drug diffusion. Interfering with processes leading to chronic ECM deposition, as occurring in cancer, might allow the simultaneous targeting of both pri…
DNA Damage and Repair in Degenerative Diseases 2016
2016
Given the great importance of the integrity of DNA for the correct transmission of the genetic message, repairing the induced lesions to its molecular structure by different endogenous or exogenous origin is crucial for the maintenance of homeostasis and biological functions of living organisms.[...]