Search results for "Homogeneous"

showing 10 items of 718 documents

THE BRUCE-ROBERTS NUMBER OF A FUNCTION ON A WEIGHTED HOMOGENEOUS HYPERSURFACE

2011

Pure mathematicsHypersurfaceHomogeneousGeneral MathematicsGeometryFunction (mathematics)MathematicsThe Quarterly Journal of Mathematics
researchProduct

Hasse diagrams and orbit class spaces

2011

Abstract Let X be a topological space and G be a group of homeomorphisms of X. Let G ˜ be an equivalence relation on X defined by x G ˜ y if the closure of the G-orbit of x is equal to the closure of the G-orbit of y. The quotient space X / G ˜ is called the orbit class space and is endowed with the natural order inherited from the inclusion order of the closure of the classes, so that, if such a space is finite, one can associate with it a Hasse diagram. We show that the converse is also true: any finite Hasse diagram can be realized as the Hasse diagram of an orbit class space built from a dynamical system ( X , G ) where X is a compact space and G is a finitely generated group of homeomo…

Pure mathematicsMathematical analysisOrbit classClosure (topology)Hasse diagramTopological spaceGroup of homeomorphismsQuotient space (linear algebra)Hasse principleRealizationHomogeneous spaceCovering relationFinitely generated groupGeometry and TopologyHasse diagramMathematicsTopology and its Applications
researchProduct

A Density Result for Homogeneous Sobolev Spaces on Planar Domains

2018

We show that in a bounded simply connected planar domain $\Omega$ the smooth Sobolev functions $W^{k,\infty}(\Omega)\cap C^\infty(\Omega)$ are dense in the homogeneous Sobolev spaces $L^{k,p}(\Omega)$.

Pure mathematicsMathematics::Analysis of PDEs01 natural sciencesPotential theoryDomain (mathematical analysis)010104 statistics & probabilityPlanartiheysSimply connected spaceClassical Analysis and ODEs (math.CA)FOS: Mathematics46E350101 mathematicsMathematicsMathematics::Functional AnalysisFunctional analysis010102 general mathematicshomogeneous Sobolev spaceSobolev spaceFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisHomogeneousMathematics - Classical Analysis and ODEsBounded functionAnalysis
researchProduct

Infinite Dimensional Holomorphy

2019

We give an introduction to vector-valued holomorphic functions in Banach spaces, defined through Frechet differentiability. Every function defined on a Reinhardt domain of a finite-dimensional Banach space is analytic, i.e. can be represented by a monomial series expansion, where the family of coefficients is given through a Cauchy integral formula. Every separate holomorphic (holomorphic on each variable) function is holomorphic. This is Hartogs’ theorem, which is proved using Leja’s polynomial lemma. For infinite-dimensional spaces, homogeneous polynomials are defined as the diagonal of multilinear mappings. A function is holomorphic if and only if it is Gâteaux holomorphic and continuous…

Pure mathematicsMathematics::Complex VariablesHomogeneous polynomialBanach spaceHolomorphic functionDifferentiable functionHartogs' theoremInfinite-dimensional holomorphyMathematics::Symplectic GeometryCauchy's integral formulaAnalytic functionMathematics
researchProduct

Holomorphic Functions on Polydiscs

2019

This is a short introduction to the theory of holomorphic functions in finitely and infinitely many variables. We begin with functions in finitely many variables, giving the definition of holomorphic function. Every such function has a monomial series expansion, where the coefficients are given by a Cauchy integral formula. Then we move to infinitely many variables, considering functions defined on B_{c0}, the open unit ball of the space of null sequences. Holomorphic functions are defined by means of Frechet differentiability. We have versions of Weierstrass and Montel theorems in this setting. Every holomorphic function on B_{c0} defines a family of coefficients through a Cauchy integral …

Pure mathematicsMonomialsymbols.namesakeHomogeneous polynomialEntire functionHolomorphic functionTaylor seriessymbolsDifferentiable functionCauchy's integral formulaAnalytic functionMathematics
researchProduct

Some Inclusion Theorems for Orlicz and Musielak-Orlicz Type Spaces

1995

where K is a homogeneous kernel and f belongs to some KSthe functional space. In these papers the estimates are taken with respect to the KSthe norm of the space. Recently in [2] we obtained analogous estimates for functions belonging to Orlicz or Musielak-Orlicz type spaces L ~, with respect to the canonical modular functional. These results enable us to say that, for example,

Pure mathematicsMusielak-Orlicz spacesApplied MathematicsNorm (mathematics)Mathematical analysisFunctional spaceBirnbaum–Orlicz spaceOrlicz spacesRiemann-Liouville fractional integralHomogeneous kernelOrlicz spaces; Musielak-Orlicz spaces; Riemann-Liouville fractional integral; homogeneous kernelshomogeneous kernelsMathematics
researchProduct

A group analysis via weak equivalence transformations for a model of tumor encapsulation

2004

A symmetry reduction of a PDEs system, describing the expansive growth of a benign tumour, is obtained via a group analysis approach. The presence in the model of three arbitrary functions suggests the use of Lie symmetries by using the weak equivalence transformations. An invariant classification is given which allows us to reduce the initial PDEs system to an ODEs system. Numerical simulations show a realistic enough description of the physical process.

Pure mathematicsPartial differential equationDifferential equationMathematical analysisOdeGeneral Physics and AstronomyLie groupStatistical and Nonlinear PhysicsWeak equivalenceGroup analysisHomogeneous spacetumor growth Lie symmetries weak equivalence transformationsInvariant (mathematics)Mathematical PhysicsMathematics
researchProduct

Remarks about the Besicovitch Covering Property in Carnot groups of step 3 and higher

2016

International audience

Pure mathematicsProperty (philosophy)Applied MathematicsGeneral Mathematicsta111010102 general mathematics[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA]16. Peace & justiceHomogeneous quasi-distances01 natural sciencesCarnot groups; Covering theorems; Homogeneous quasi-distances; Mathematics (all); Applied Mathematics010305 fluids & plasmasCombinatoricssymbols.namesakeCarnot groupsCovering theorems0103 physical sciencessymbolsMathematics (all)[MATH]Mathematics [math]0101 mathematicsCarnot cycle[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]ComputingMilieux_MISCELLANEOUSMathematicsProceedings of the American Mathematical Society
researchProduct

Nowhere differentiable intrinsic Lipschitz graphs

2021

We construct intrinsic Lipschitz graphs in Carnot groups with the property that, at every point, there exist infinitely many different blow-up limits, none of which is a homogeneous subgroup. This provides counterexamples to a Rademacher theorem for intrinsic Lipschitz graphs.

Pure mathematicsProperty (philosophy)General MathematicsMathematics::Analysis of PDEs01 natural sciencesdifferentiaaligeometriasymbols.namesakeMathematics - Metric Geometry0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric GeometryPoint (geometry)Differentiable function0101 mathematicsMathematics010102 general mathematicsryhmäteoriaMetric Geometry (math.MG)16. Peace & justiceLipschitz continuity53C17 58C20 22E25Mathematics - Classical Analysis and ODEsHomogeneoussymbols010307 mathematical physicsCarnot cycleCounterexample
researchProduct

A construction of equivariant bundles on the space of symmetric forms

2021

We construct stable vector bundles on the space of symmetric forms of degree d in n+1 variables which are equivariant for the action of SL_{n+1}(C), and admit an equivariant free resolution of length 2. For n=1, we obtain new examples of stable vector bundles of rank d-1 on P^d, which are moreover equivariant for SL_2(C). The presentation matrix of these bundles attains Westwick's upper bound for the dimension of vector spaces of matrices of constant rank and fixed size.

Pure mathematicsRank (linear algebra)General MathematicsVector bundlestable vector bundlesSpace (mathematics)Mathematics - Algebraic GeometryMatrix (mathematics)symmetric formsDimension (vector space)FOS: MathematicsRepresentation Theory (math.RT)Algebraic Geometry (math.AG)Mathematics::Symplectic Geometryhomogeneous varietyMathematicsequivariant resolution14J60quiver representationconstant rank matrixhomogeneous bundleEquivariant mapgroup actionStable vector bundles; symmetric forms; group action; equivariant resolution; constant rank matrix; homogeneous bundle; homogeneous variety; quiver representationMathematics - Representation TheoryResolution (algebra)Vector spaceRevista Matemática Iberoamericana
researchProduct