Search results for "Hydrogen evolution"
showing 9 items of 19 documents
Photocatalytic solar light H2 production by aqueous glucose reforming
2018
A series of tungsten and nitrogen doped Pt-TiO2 samples were prepared with the aim to extend the TiO2 absorption to the visible light region and to enhance the separation efficiency of the photogenerated electron/hole pairs. The physicochemical features of the powders were characterized by Xray diffraction (XRD), UV/Vis reflectance spectra, specific surface area (SSA) determinations, and transmission electron microscopy (TEM) analyses. The influence of the presence of different doping agents was evaluated, under anaerobic conditions, in the aqueous photo-reforming of glucose to form H2 at ambient pressure and temperature under a halogen lamp or natural solar light irradiation. Arabinose, er…
Electrodeposited nickel–zinc alloy nanostructured electrodes for alkaline electrolyzer
2022
Abstract Over the last decade, as a consequence of the global decarbonization process, the interest towards green hydrogen production has drastically increased. In particular a substantial research effort has focused on the efficient and affordable production of carbon-free hydrogen production processes. In this context, the development of more efficient electrolyzers with low-cost electrode/electrocatalyst materials can play a key role. This work, investigates the fabrication of electrodes of nickel-zinc alloys with nanowires morphology cathode for alkaline electrolyzers. Electrodes are obtained by the simple method of template electrosynthesis that is also inexpensive and easily scalable.…
Coadsorption of NRR and HER Intermediates Determines the Performance of Ru-N4 toward Electrocatalytic N2 Reduction
2021
Efficiency of the electrochemical N2 reduction reaction (NRR) to ammonia is seriously limited by the competing hydrogen evolution reaction (HER) but our current atomic-scale insight on the factors controlling HER/NRR competition are unknown. Herein we unveil the elementary mechanism, thermodynamics, and kinetics determining the HER/NRR selectivity on the state-of-the-art NRR electrocatalyst, Ru-N4 using constant potential density functional theory calculations (DFT). The calculations show that NRR and HER intermediates coadsorb on the catalyst where HER is greatly suppressed by the NRR intermediates. The first reaction step leading to either *NNH or *H determines the selectivity towards NRR…
Nanostructured Ni-Co Alloy Electrodes Fabrication and Characterization for both Hydrogen and Oxygen Evolution Reaction in Alkaline Electrolyzer
2019
Sun and wind as power sources are becoming more and more relevant owing to the progressive abandoning of the fossil fuels [1,2]. Additionally, worldwide public authorities are encouraging the use of renewable energies by promoting laws and guidelines [3,4]. In this scenario, a fundamental role can play hydrogen that besides being a valuable energy carrier, it can also act as a storage medium to balance the discontinuity affecting the renewable energy sources production [5]. As a consequence, cheap and abundant availability of hydrogen is crucial. Electrochemical water splitting is likely one of the most valuable technique to produce hydrogen because the process is environmentally friendly b…
NANOSTRUCTURED ELECTRODES FOR HYDROGEN PRODUCTION IN ALKALINE ELECTROLYZER
Optimization of Electrodeposited Nickel-Zinc Alloys for Alkaline Electrolyzer with Nanostructured Electrodes
It is common opinion that hydrogen will become increasingly important over time. However, many research efforts still need to be made to develop efficient, low-cost and carbon-free hydrogen production. In this context, electrolysers will play a key role, but it is necessary to develop efficient and low-cost electrode/electrocatalyst materials. In this work, Nickel-Zinc alloy electrodes with nanowires morphology were investigated as cathode for alkaline electrolyzer. Electrodes were obtained by the simple method of template electrosynthesis that is also inexpensive and scalable. Nanostructured electrodes were analysed by morphological and chemical analyses. The nanowires composition is depen…
Review of the Hydrogen Evolution Reaction—A Basic Approach
2021
An increasing emphasis on energy storage has resulted in a surge of R&D efforts into producing catalyst materials for the hydrogen evolution reaction (HER) with emphasis on decreasing the usage of platinum group metals (PGMs). Alkaline water electrolysis holds promise for satisfying future energy storage demands, however the intrinsic potential of this technology is impeded by sluggish reaction kinetics. Here, we summarize the latest efforts within alkaline HER electrocatalyst design, where these efforts are divided between three catalyst design strategies inspired by the three prevailing theories describing the pH-dependence of the HER activity. Modifying the electronic structure of a …
Flexible Perfluoropolyethers-Functionalized CNTs-Based UHMWPE Composites: A Study on Hydrogen Evolution, Conductivity and Thermal Stability
2022
Flexible conductive composites based on ultra-high molecular weight polyethylene (UHMWPE) filled with multi-walled carbon nanotubes (CNTs) modified by perfluoropolyethers (PFPEs) were produced. The bonding of PFPE chains, added in 1:1 and 2:1 weight ratios, on CNTs influences the dispersion of nanotubes in the UHMWPE matrix due to the non-polar nature of the polymer, facilitating the formation of nanofillers-rich conductive pathways and improving composites’ electrical conductivity (two to five orders of magnitude more) in comparison to UHMWPE-based nanocomposites obtained with pristine CNTs. Electrochemical atomic force microscopy (EC-AFM) was used to evaluate the morphological changes dur…
Highly Active and Stable NiCuMo Electrocatalyst Supported on 304 Stainless Steel Porous Transport Layer for Hydrogen Evolution in Alkaline Water Elec…
2023
Several functionalized porous transport layers with Pt-free electrocatalysts for hydrogen evolution reaction in alkaline conditions, based on Ni, Cu, and Mo, are prepared through electrodeposition onto a 304 stainless steel mesh. Morphological characterization confirms the fabrication of electrodes with high electrochemical surface active area due to the formation of hierarchical nanostructures. Mo presence into the electrocatalysts increases the activity toward the hydrogen evolution reaction. The optimization of electrodeposition process leads to the preparation of highly active NiCuMo electrocatalyst that exhibits near zero onset overpotential and overpotentials of 15 and 113 mV at 10 an…