Search results for "I.2"
showing 10 items of 662 documents
Novel TiO2-WO3 self-ordered nanotubes used as photoanodes: Influence of Na2WO4 and H2O2 concentration during electrodeposition
2021
[EN] Hybrid TiO2-WO3 nanostructures has been synthesized by electrochemical anodization under controlled hydrodynamic conditions followed by electrodeposition in the presence of different contents of Na2WO4 (5, 15 and 25 mM) and H2O2 (20, 30 and 40 mM). The influence of the electrolyte used for electrodeposition on the morphology, crystalline structure and photoelectrochemical response for water splitting has been evaluated through Field Emission Electronic Microscopy, High-Resolution Transmission Electron Microscopy, Confocal Raman Spectroscopy, Grazing Incidence X Ray Diffraction, X-Ray Photoelectron Spectroscopy, Atomic Force microscopy and photocurrent versus potential measurements. Add…
Influence of Nb-doping on the local structure and thermoelectric properties of transparent TiO2:Nb thin films
2020
The experiment at HASYLAB/DESY was performed within the project I-20180036 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. Filipe Correia is grateful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for the Ph.D. Grant SFRH/BD/111720/2015 . Joana Ribeiro is grateful to the Project WinPSC - POCI-01-0247-FEDER-017796, for the research grant, co-funded by the European Regional Development Fund (ERDF) , through the Operational Programme for Competitiveness and Internationalisation (COMPETE 2020), under the PORTUGAL 2020 Partnership Agreement…
Interface Solid-State Reactions in La0.8Sr0.2MnO3/Ce0.8Sm0.2O2 and La0.8Sr0.2MnO3/BaCe0.9Y0.1O3 Disclosed by X-ray Microspectroscopy
2019
The stability of the electrode/electrolyte interface is a critical issue in solid-oxide cells working at high temperatures, affecting their durability. In this paper, we investigate the solid-state chemical mechanisms that occur at the interface between two electrolytes (Ce0.8Sm0.2O2, SDC, and BaCe0.9Y0.1O3, BCY) and a cathode material (La0.8Sr0.2MnO3, LSM) after prolonged thermal treatments. Following our previous work on the subject, we used X-ray microspectroscopy, a technique that probes the interface with submicrometric resolution combining microanalytical information with the chemical and structural information coming from space-resolved X-ray absorption spectroscopy. In LSM/BCY, the …
Effectiveness of some protective and self-cleaning treatments: a challenge for the conservation of temple G stone in Selinunte
2021
Abstract The Temple G of the Archaeological Park of Selinunte (Italy), the largest in Europe, is one of the most impressive temples in the Magna Grecia. Today, it is completely destroyed due to a strong earthquake occurred in the Middle Ages. The used stone is a calcarenite coming from the ancient and renowned quarries of Cusa near the acropolis. This work comes from the today’s proposal of Temple G anastylosis. The goal of the work is to provide the results relating the protective effectiveness of three polymer formulations, appropriately selected, on stone samples taken from the “Capitello” quarry, part of “Cusa quarries”. The formulations functionality was deployed by adding TiO2 nanopar…
Reversible oxidation of WOx and MoOx nano phases
2012
International audience; WOx and MoOx nano phases were prepared on TiO2(1 1 0) surfaces by a CVD procedure consisting of adsorption and decomposition of W(CO)(6) or Mo(CO)(6) precursors followed by annealing under UHV. Metal amount involved in each elaborated sample is in the fractional range from 0.1 to 0.35 equivalent monolayer (eqML) of W or Mo. Evolution of sample stoichiometry as a function of subsequent treatment is followed by valence band and core level photoemission as well as work function measurement. In each case, exposure of samples to molecular oxygen at room temperature induces an increase of sample work function in a range of several tenth of eV. Such a work function change i…
Influence of Anodic and Thermal Barrier Layers on Physicochemical Behavior of Anodic TiO2 Nanotubes
2011
Electrochemical and photo-electrochemical behavior of self-organized TiO2 nanotubes formed in organic solvents have been studied by taking into account the formation of new barrier layers beneath nanotubes either due to the anodic polarization in aqueous solutions or air exposure during high temperature annealing. It has been shown that before annealing, electrochemical and photoelectrochemical answers are dominantly controlled by the physicochemical properties of the anodic barrier layer. Annealing in air at sufficiently high temperatures changes the initial amorphous structure of as-prepared nanotubes and forms a new oxide layer below them due to thermal oxidation of underneath titanium. …
Near Room-Temperature Memory Devices Based on Hybrid Spin-Crossover@SiO2Nanoparticles Coupled to Single-Layer Graphene Nanoelectrodes
2016
The charge transport properties of SCO [Fe(Htrz)2 (trz)](BF4 ) NPs covered with a silica shell placed in between single-layer graphene electrodes are reported. A reproducible thermal hysteresis loop in the conductance above room-temperature is evidenced. This bistability combined with the versatility of graphene represents a promising scenario for a variety of technological applications but also for future sophisticated fundamental studies.
Brookite, the Least Known TiO2 Photocatalyst
2013
Brookite is the least studied TiO2 photocatalyst due to the difficulties usually encountered in order to obtain it as a pure phase. In this review, a comprehensive survey of the different methods available for preparing brookite powders and films is reported. Attention has been paid both to the most traditional methods, such as hydrothermal processes at high temperatures and pressures, and to environmentally benign syntheses using water soluble compounds and water as the solvent. Papers reporting the photocatalytic activity of pure and brookite-based samples have been reviewed.
Improving the On-Line Extraction of Polar Compounds by IT-SPME with Silica Nanoparticles Modified Phases
2018
In the present work the extraction efficiency of in-tube solid-phase microextraction (IT-SPME) for polar herbicides has been evaluated using extractive capillaries coated with different polymeric sorbents. For this purpose, aqueous solutions of herbicides with a wide range of polarities, including some highly polar compounds (log Kow < 1), have been directly processed by IT-SPME coupled on-line to capillary liquid chromatography with UV-diode array detection. For extraction, commercially available capillary columns coated with polydimethylsiloxane (PDMS) and polyetilenglicol (PEG)-based phases have been used, and the results have been compared with those obtained with a synthesized tetra…
Junction Effect on the Photocatalytic Activity of Mixed-Phase TiO2 Nanoparticles
2010
Active TiO2 photocatalysts were prepared under mild experimental conditions by thermohydrolysis of TiCl4 in pure water at 100 {degree sign}C. The preparation method is very simple and does not require the use of expensive thermal or hydrothermal treatments. Depending on the TiCl4/H2O ratio, pure rutile, binary mixtures of anatase and rutile or anatase and brookite, or ternary mixtures of anatase, brookite and rutile, can be obtained. 4-nitrophenol photodegradation was used to evaluate the photoactivity of the various powders. The high photocatalytic activity of the mixed samples was explained by the presence of junctions among different polymorphic TiO2 phases that allows an improved charge…