Search results for "IC framework"

showing 10 items of 268 documents

Innentitelbild: Exploiting Reaction‐Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF (Angew. Chem. 29/2021)

2021

Chemical engineeringlawChemistryReaction–diffusion systemMetal-organic frameworkGeneral MedicineCrystallizationlaw.inventionAngewandte Chemie
researchProduct

2020 Roadmap on two-dimensional nanomaterials for environmental catalysis

2019

Abstract Environmental catalysis has drawn a great deal of attention due to its clean ways to produce useful chemicals or carry out some chemical processes. Photocatalysis and electrocatalysis play important roles in these fields. They can decompose and remove organic pollutants from the aqueous environment, and prepare some fine chemicals. Moreover, they also can carry out some important reactions, such as O2 reduction reaction (ORR), O2 evolution reaction (OER), H2 evolution reaction (HER), CO2 reduction reaction (CO2RR), and N2 fixation (NRR). For catalytic reactions, it is the key to develop high-performance catalysts to meet the demand for targeted reactions. In recent years, two-dimen…

Chemical processMaterials scienceLayered double hydroxidesNanotechnology02 engineering and technologyGeneral Chemistryengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBlack phosphorus0104 chemical sciencesNanomaterialsCatalysisPhotocatalysisengineeringMetal-organic framework0210 nano-technologyMXenesChinese Chemical Letters
researchProduct

Cover Feature: Triplet–Triplet Annihilation Upconversion in a MOF with Acceptor‐Filled Channels (Chem. Eur. J. 5/2020)

2019

ChemistryFeature (computer vision)Organic ChemistryMetal-organic frameworkCover (algebra)General ChemistryTriplet triplet annihilationHybrid materialAcceptorMolecular physicsCatalysisPhoton upconversionChemistry – A European Journal
researchProduct

Electrochemistry nanometric patterning of MOF particles: Anisotropic metal electrodeposition in Cu/MOF

2006

Abstract Electrodeposition of copper from Cu/MOF immersed into acetate buffer produces a quasi-periodic series of 10–20 nm sized laminae sandwiched within the pristine MOF lattice as monitored by voltammetry of microparticles/atomic force microscopy. This anisotropic patterning can be qualitatively described in terms of a highly orientation-dependent diffusion of electrons and charge-balancing electrolyte counterions in the MOF network.

ChemistryInorganic chemistrychemistry.chemical_elementElectrolyteBuffer solutionElectrochemistryCopperlcsh:Chemistrychemistry.chemical_compoundlcsh:Industrial electrochemistrylcsh:QD1-999Transition metalTransmission electron microscopyElectrochemistryMetal-organic frameworkVoltammetrylcsh:TP250-261Electrochemistry Communications
researchProduct

Selective CO2 adsorption by a triazacyclononane-bridged microporous metal-organic framework.

2011

Metal-organic frameworks constructed by self-assembly of metal ions and organic linkers have recently been of great interest in the preparation of porous hybrid materials with a wide variety of functions. Despite much research in this area and the large choice of building blocks used to fine-tune pore size and structure, it remains a challenge to synthesise frameworks composed of polyamines to tailor the porosity and adsorption properties for CO(2). Herein, we describe a rigid and microporous three-dimensional metal-organic framework with the formula [Zn(2)(L)(H(2)O)]Cl (L=1,4,7-tris(4-carboxybenzyl)-1,4,7-triazacyclononane) synthesised in a one-pot solvothermal reaction between zinc ions a…

ChemistryMetal ions in aqueous solutionOrganic ChemistryInorganic chemistrySorptionGeneral ChemistryMicroporous materialCatalysisAdsorptionChemical engineeringMetal-organic frameworkGas separationHybrid materialSelectivityChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Synthesis and Characterisation of a New Series of Bistable Iron(II) Spin-Crossover 2D Metal-Organic Frameworks

2009

Twelve coordination polymers with formula {Fe(3-Xpy)(2)[M(II)(CN)(4)]} (M(II): Ni, Pd, Pt; X: F, Cl, Br, I; py: pyridine) have been synthesised, and their crystal structures have been determined by single-crystal or powder X-ray analysis. All of the fluoro and iodo compounds, as well as the chloro derivative in which M(II) is Pt, crystallise in the monoclinic C2/m space group, whereas the rest of the chloro and all of the bromo derivatives crystallise in the orthorhombic Pnc2 space group. In all cases, the iron(II) atom resides in a pseudo-octahedral [FeN(6)] coordination core, with similar bond lengths and angles in the various derivatives. The major difference between the two kinds of str…

ChemistryOrganic ChemistryInorganic chemistrySpin transitionGeneral ChemistryCrystal structureCatalysisBond lengthCrystallographychemistry.chemical_compoundSpin crossoverPyridineOrthorhombic crystal systemMetal-organic frameworkMonoclinic crystal systemChemistry - A European Journal
researchProduct

Cover Picture: Solid-State Molecular Nanomagnet Inclusion into a Magnetic Metal-Organic Framework: Interplay of the Magnetic Properties (Chem. Eur. J…

2015

ChemistryOrganic ChemistrySolid-stateMetal-organic frameworkNanotechnologyCover (algebra)General ChemistryInclusion (mineral)NanomagnetCatalysisChemistry - A European Journal
researchProduct

Conversion of levulinic acid to γ-valerolactone over Zr-containing metal-organic frameworks: Evidencing the role of Lewis and Brønsted acid sites

2021

Zr-containing UiO-66 and MOF-808 are evaluated for converting levulinic acid (LA) into γ-valerolactone (GVL) through various routes: (i) Step-wise esterification of LA to n-butyl levulinate (nBuL) and Meerwein-Ponndorf-Verley (MPV) reduction to GVL; (ii) One-pot two-steps esterification with n-butanol followed by MPV reduction with sec-butanol; and (iii) direct conversion of LA into GVL through a tandem reaction. Selection of this multistep complex reaction evidences the participation of the different acid sites (Lewis or Brønsted) of the material in each individual step: Brønsted-induced acid sites catalyze esterification reaction efficiently, while Lewis acid sites are the preferred sites…

ChemistryProcess Chemistry and TechnologyZirconium MOFsCatalysisCatalysischemistry.chemical_compoundSulfationLevulinic acidCascade reactionUiO-66Levulinic acidOrganic chemistryMetal-organic frameworkLewis acids and basesPhysical and Theoretical ChemistrySulfateGamma-valerolactoneBrønsted–Lowry acid–base theoryMOF-808Molecular Catalysis
researchProduct

Growing and Shaping Metal–Organic Framework Single Crystals at the Millimeter Scale

2020

Controlling and understanding the mechanisms that harness crystallization processes is of utmost importance in contemporary materials science and, in particular, in the realm of reticular solids where it still remains a great challenge. In this work, we show that environments mimicking microgravity conditions can harness the size and shape of functional biogenic crystals such as peptide-based metal–organic frameworks (MOFs). In particular, we demonstrate formation of the largest single crystals with controlled nonequilibrium shapes of peptide-based MOFs reported to date (e.g., those featuring curved crystal habits), as opposed to the typical polyhedral microcrystals obtained under bul…

ChemistryScale (chemistry)Crystal growthNanotechnologyGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical scienceslaw.inventionColloid and Surface ChemistrySimulated microgravitylawMetal-organic frameworkCrystallizationCrystal habitBiomineralizationJournal of the American Chemical Society
researchProduct

A Wavy Two-Dimensional Covalent Organic Framework from Core- Twisted Polycyclic Aromatic Hydrocarbons

2019

A high degree of crystallinity is an essential aspect in two-dimensional covalent organic frameworks, as many properties depend strongly on the structural arrangement of the different layers and their constituents. We introduce herein a new design strategy based on core-twisted polycyclic aromatic hydrocarbon as rigid nodes that give rise to a two-dimensional covalent organic framework with a wavy honeycomb (chairlike) lattice. The concave–convex self-complementarity of the wavy two-dimensional lattice guides the stacking of framework layers into a highly stable and ordered covalent organic framework that allows a full 3D analysis by transmission electron microscopy revealing its chairlike …

ChemistryStackingGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesCrystallinityColloid and Surface ChemistryPlanarChemical physicsCovalent bondLattice (order)HoneycombMesoporous materialCovalent organic framework
researchProduct