Search results for "IDS"

showing 10 items of 9223 documents

Effects of magnetic configuration on hot electrons in a minimum-B ECR plasma

2020

International audience; To investigate the hot electron population and the appearance of kinetic instabilities in highly charged electron cyclotron resonance ion source (ECRIS), the axially emitted bremsstrahlung spectra and microwave bursts emitted from ECRIS plasma were synchronously measured on SECRAL-II (Superconducting ECR ion source with Advanced design in Lanzhou No. II) ion source with various magnetic field configurations. The experimental results show that when the ratio of the minimum field to the resonance field (i.e. Bmin/Becr ) is less than ~0.8, the bremsstrahlung spectral temperature Ts increases linearly with the Bmin/Becr –ratio when the injection, extraction and radial mi…

010302 applied physicsPhysics[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Cyclotron resonanceBremsstrahlungResonancePlasmaCondensed Matter Physics01 natural sciencesElectromagnetic radiationElectron cyclotron resonance010305 fluids & plasmasMagnetic fieldNuclear Energy and Engineering0103 physical sciencesAtomic physicsMicrowave
researchProduct

Hydrogen plasma induced photoelectron emission from low work function cesium covered metal surfaces

2017

Experimental results of hydrogen plasma induced photoelectron emission from cesium covered metal surfaces under ion source relevant conditions are reported. The transient photoelectron current during the Cs deposition process is measured from Mo, Al, Cu, Ta, Y, Ni, and stainless steel (SAE 304) surfaces. The photoelectron emission is 2–3.5 times higher at optimal Cs layer thickness in comparison to the clean substrate material. Emission from the thick layer of Cs is found to be 60%–80% lower than the emission from clean substrates. peerReviewed

010302 applied physicsPhysicsta114HydrogenTantalumAnalytical chemistrytransitionchemistry.chemical_elementSubstrate (electronics)plasmasCondensed Matter Physics01 natural sciencesIon sourcework functions010305 fluids & plasmasion sourceschemistryAluminiumCaesium0103 physical sciencesWork functionLayer (electronics)photoemissionPhysics of Plasmas
researchProduct

Cyclotron instability in the afterglow mode of minimum-B ECRIS.

2016

It was shown recently that cyclotron instability in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source (ECRIS) causes perturbation of the extracted ion current and generation of strong bursts of bremsstrahlung emission, which limit the performance of the ion source. The present work is devoted to the dynamic regimes of plasma instability in ECRIS operated in pulsed mode. Instability develops in decaying plasma shortly after heating microwaves are switched off and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high energy electrons. Time-resolved measurements of microwave emission bursts are presented. I…

010302 applied physicsPhysicsta114ta213Astrophysics::High Energy Astrophysical Phenomenaplasma instabilityCyclotronBremsstrahlungPlasma01 natural sciencesInstabilityIon sourceElectron cyclotron resonance010305 fluids & plasmaslaw.inventionTwo-stream instabilityPhysics::Plasma Physicslaw0103 physical scienceselectron cyclotron resonance ion sourcesAtomic physicsInstrumentationIon cyclotron resonanceThe Review of scientific instruments
researchProduct

THE GYROTRON STARTUP SCENARIO IN THE SINGLE MODE TIME DEPENDENT APPROACH

2019

The paper explains how to solve the Gyrotron equation system in the Single Mode Time Dependent Approach. In particular, we point out problems encountered when solving these well-known equations. The starting current estimation approach a using time model is suggested. The solution has been implemented in the Matlab code, which is attached to the article.

010302 applied physicsPhysicstime dependent approachgyrotronNuclear engineeringSingle-mode optical fiberMatlab code01 natural sciences010305 fluids & plasmaslaw.inventiondifferential equationlawModeling and SimulationGyrotron0103 physical sciencesQA1-939MathematicsAnalysisMathematical Modelling and Analysis
researchProduct

Lead evaporation instabilities and failure mechanisms of the micro oven at the GTS-LHC ECR ion source at CERN

2020

The GTS-LHC ECR ion source (named after the Grenoble Test Source and the Large Hadron Collider) at CERN provides heavy ion beams for the chain of accelerators from Linac3 up to the LHC for high energy collision experiments and to the Super Proton Synchrotron for fixed target experiments. During the standard operation, the oven technique is used to evaporate lead into the source plasma to produce multiple charged lead ion beams. Intensity and stability are key parameters for the beam, and the operational experience is that some of the source instabilities can be linked to the oven performance. Over long operation periods of several weeks, the evaporation is not stable which makes the tuning …

010302 applied physicsRange (particle radiation)Large Hadron ColliderMaterials scienceionitNuclear engineeringEvaporationPlasmahiukkaskiihdyttimetplasmafysiikka01 natural sciencesSuper Proton SynchrotronIon source010305 fluids & plasmasIonComputer Science::OtherPhysics::Popular Physics0103 physical scienceslyijyInstrumentationBeam (structure)
researchProduct

An Experimental Study of Waveguide Coupled Microwave Heating with Conventional Multicusp Negative Ion Source

2015

Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RFdriven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electro…

010302 applied physicsWaveguide (electromagnetism)Materials scienceFOS: Physical sciencesPlasmaElectron7. Clean energy01 natural sciencesIon sourcePhysics - Plasma Physics010305 fluids & plasmasIonPlasma Physics (physics.plasm-ph)Electric arcPhysics::Plasma Physics0103 physical sciencesAtomic physicsMicrowaveBeam (structure)
researchProduct

The role of radio frequency scattering in high-energy electron losses from minimum-B ECR ion source

2021

Abstract The measurement of the axially lost electron energy distribution escaping from a minimum-B electron cyclotron resonance ion source in the range of 4–800 keV is reported. The experiments have revealed the existence of a hump at 150–300 keV energy, containing up to 15% of the lost electrons and carrying up to 30% of the measured energy losses. The mean energy of the hump is independent of the microwave power, frequency and neutral gas pressure but increases with the magnetic field strength, most importantly with the value of the minimum-B field. Experiments in pulsed operation mode have indicated the presence of the hump only when microwave power is applied, confirming that the origi…

010302 applied physics[PHYS]Physics [physics]High energyMaterials scienceScatteringAstrophysics::High Energy Astrophysical Phenomena[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]scatteringElectronhiukkaskiihdyttimetCondensed Matter Physicselektronit01 natural sciences7. Clean energyIon source010305 fluids & plasmasNuclear Energy and Engineering0103 physical sciencessirontaRadio frequencyAtomic physics
researchProduct

The biased disc of an electron cyclotron resonance ion source as a probe of instability-induced electron and ion losses

2019

International audience; Electron Cyclotron Resonance Ion Source (ECRIS) plasmas are prone to kinetic instabilities resulting in loss of electron and ion confinement. It is demonstrated that the biased disk of an ECRIS can be used as a probe to quantify such instability-induced electron and ion losses occurring in less than 10 µs. The qualitative interpretation of the data is supported by the measurement of the energy spread of the extracted ion beams implying a transient plasma potential >1.5 kV during the instability. A parametric study of the electron losses combined with electron tracking simulations allows for estimating the fraction of electrons expelled in each instability event to be…

010302 applied physics[PHYS]Physics [physics]Materials sciencesyklotronit[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]ElectronPlasmahiukkaskiihdyttimetKinetic energyplasmafysiikka01 natural sciencesInstabilityElectron cyclotron resonanceIon source010305 fluids & plasmasIonPhysics::Plasma Physics0103 physical sciencesTransient (oscillation)Atomic physicsInstrumentation
researchProduct

Ion source research and development at University of Jyväskylä: Studies of different plasma processes and towards the higher beam intensities

2015

MonPS16; International audience; The long-term operation of high charge state electron cyclotron resonance ion sources fed withhigh microwave power has caused damage to the plasma chamber wall in several laboratories.Porosity, or a small hole, can be progressively created in the wall on a year time scale, which cancause a water leak from the cooling system into the plasma chamber vacuum. A burnout of theVENUS chamber is investigated. Information on the hole formation and on the necessary localhot electron power density is presented. Next, the hot electron flux to the wall is studied bymeans of simulations. First, the results of a simple model assuming that electrons are fullymagnetized and …

010302 applied physicsbeam intensityMaterials scienceta114ta213plasma diagnostics[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Cyclotron resonanceElectronPlasma7. Clean energy01 natural sciencesElectron cyclotron resonanceIon source010305 fluids & plasmasIonBeamlinePhysics::Plasma Physics0103 physical scienceselectron cyclotron resonance ion sourcesPlasma diagnosticsAtomic physicsInstrumentation
researchProduct

Estimating ion confinement times from beam current transients in conventional and charge breeder ECRIS

2019

International audience; Cumulative ion confinement times are probed by measuring decaying ion current transients in pulsed material injection mode. The method is applied in a charge breeder and conventional ECRIS yielding mutually corroborative results. The cumulative confinement time estimates vary from approximately 2 ms–60 ms with a clear dependence on the ion charge-to-mass ratio—higher charges having longer residence times. The long cumulative confinement times are proposed as a partial explanation to recently observed unexpectedly high ion temperatures. The results are relevant for rare ion beam (RIB) production as the confinement time and the lifetime of stable isotopes can be used f…

010302 applied physicsplasma sourcesMaterials scienceplasma diagnosticsIon beamStable isotope ratio[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Ion currentCharge (physics)plasmatekniikka7. Clean energy01 natural sciences010305 fluids & plasmasIonion sourcesplasma dischargesBreeder (animal)0103 physical sciencesAtomic physicsCurrent (fluid)InstrumentationBeam (structure)
researchProduct