Search results for "INEQUALITY"

showing 10 items of 1076 documents

Characterizing extreme points of polyhedra an extension of a result by Wolfgang Bühler

1982

This paper reconsiders the characterization given by Buhler admitting convex polyhedra of probability distributions on a finite or countable set which are given by systems of linear inequalities more complex than those considered before.

Discrete mathematicsGeneral MathematicsRegular polygonInteger points in convex polyhedraManagement Science and Operations ResearchCombinatoricsPolyhedronLinear inequalityConvex polytopeCountable setExtreme pointSoftwareSpherical polyhedronMathematicsZeitschrift für Operations Research
researchProduct

About Aczél Inequality and Some Bounds for Several Statistical Indicators

2020

In this paper, we will study a refinement of the Cauchy&ndash

Discrete mathematicsInequalityGeneral Mathematicsmedia_common.quotation_subjectlcsh:Mathematics010102 general mathematicsstatistical indicatorsMathematics::Analysis of PDEsVariation (game tree)lcsh:QA1-93901 natural sciences0103 physical sciencesComputer Science (miscellaneous)010307 mathematical physicsCauchy–Buniakowski–Schwarz inequality0101 mathematicsEngineering (miscellaneous)MathematicsSequence (medicine)media_commonMathematics
researchProduct

Sobolev classes of Banach space-valued functions and quasiconformal mappings

2001

We give a definition for the class of Sobolev functions from a metric measure space into a Banach space. We give various characterizations of Sobolev classes and study the absolute continuity in measure of Sobolev mappings in the “borderline case”. We show under rather weak assumptions on the source space that quasisymmetric homeomorphisms belong to a Sobolev space of borderline degree; in particular, they are absolutely continuous. This leads to an analytic characterization of quasiconformal mappings between Ahlfors regular Loewner spaces akin to the classical Euclidean situation. As a consequence, we deduce that quasisymmetric maps respect the Cheeger differentials of Lipschitz functions …

Discrete mathematicsMathematics::Complex VariablesGeneral MathematicsEberlein–Šmulian theoremMathematics::Analysis of PDEsSobolev inequalitySobolev spaceMathematics::Metric GeometryBesov spaceInterpolation spaceBirnbaum–Orlicz spaceMetric differentialAnalysisMathematicsTrace operator
researchProduct

Hoffman's Error Bound, Local Controllability, and Sensitivity Analysis

2000

Our aim is to present sufficient conditions ensuring Hoffman's error bound for lower semicontinuous nonconvex inequality systems and to analyze its impact on the local controllability, implicit function theorem for (non-Lipschitz) multivalued mappings, generalized equations (variational inequalities), and sensitivity analysis and on other problems like Lipschitzian properties of polyhedral multivalued mappings as well as weak sharp minima or linear conditioning. We show how the information about our sufficient conditions can be used to provide a computable constant such that Hoffman's error bound holds. We also show that this error bound is nothing but the classical Farkas lemma for linear …

Discrete mathematicsMaxima and minimaControllabilityLinear inequalityControl and OptimizationApplied MathematicsErgodicityVariational inequalityApplied mathematicsConstant (mathematics)Farkas' lemmaImplicit function theoremMathematicsSIAM Journal on Control and Optimization
researchProduct

Maximal function estimates and self-improvement results for Poincaré inequalities

2018

Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed

Discrete mathematicsPure mathematicsGeneral Mathematics010102 general mathematicsAlgebraic geometryharmoninen analyysi01 natural sciencesUniversality (dynamical systems)Sobolev inequalitySobolev spacesymbols.namesakeNumber theoryinequalities0103 physical sciencesPoincaré conjecturesymbolsharmonic analysisMaximal function010307 mathematical physicsDifferentiable function0101 mathematicsfunktionaalianalyysiepäyhtälötMathematics
researchProduct

On the continuity of discrete maximal operators in Sobolev spaces

2014

We investigate the continuity of discrete maximal operators in Sobolev space W 1;p (R n ). A counterexample is given as well as it is shown that the continuity follows under certain sucient assumptions. Especially, our research verifies that for the continuity in Sobolev spaces the role of the partition of the unity used in the construction of the maximal operator is very delicate.

Discrete mathematicsSobolev spaceGeneral Mathematicsta111Maximal operatorPartition (number theory)Modulus of continuityCounterexampleSobolev inequalitySobolev spaces for planar domainsMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Extensions and Imbeddings

1998

AbstractWe establish a connection between the Sobolev imbedding theorem and the extendability of Sobolev functions. As applications we give geometric criteria for extendability and give a result on the dependence of the extension property on the exponentp.

Discrete mathematicsSobolev spacePure mathematicsMathematics::Functional AnalysisProperty (philosophy)Mathematics::Analysis of PDEsExtension (predicate logic)AnalysisConnection (mathematics)Sobolev inequalityMathematicsJournal of Functional Analysis
researchProduct

Orlicz–Sobolev extensions and measure density condition

2010

Abstract We study the extension properties of Orlicz–Sobolev functions both in Euclidean spaces and in metric measure spaces equipped with a doubling measure. We show that a set E ⊂ R satisfying a measure density condition admits a bounded linear extension operator from the trace space W 1 , Ψ ( R n ) | E to W 1 , Ψ ( R n ) . Then we show that a domain, in which the Sobolev embedding theorem or a Poincare-type inequality holds, satisfies the measure density condition. It follows that the existence of a bounded, possibly non-linear extension operator or even the surjectivity of the trace operator implies the measure density condition and hence the existence of a bounded linear extension oper…

Discrete mathematicsTransverse measureComplete measureApplied MathematicsBounded functionComplex measureσ-finite measureMeasure (mathematics)AnalysisSobolev inequalityTrace operatorMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Weighted norm inequalities in a bounded domain by the sparse domination method

2019

AbstractWe prove a local two-weight Poincaré inequality for cubes using the sparse domination method that has been influential in harmonic analysis. The proof involves a localized version of the Fefferman–Stein inequality for the sharp maximal function. By establishing a local-to-global result in a bounded domain satisfying a Boman chain condition, we show a two-weight p-Poincaré inequality in such domains. As an application we show that certain nonnegative supersolutions of the p-Laplace equation and distance weights are p-admissible in a bounded domain, in the sense that they support versions of the p-Poincaré inequality.

Discrete mathematicsosittaisdifferentiaaliyhtälötInequalityGeneral Mathematicsmedia_common.quotation_subject010102 general mathematicsPoincaré inequalityharmoninen analyysi01 natural sciences35A23 (Primary) 42B25 42B37 (Secondary)Harmonic analysis010104 statistics & probabilitysymbols.namesakeMathematics - Analysis of PDEsNorm (mathematics)Bounded functionFOS: MathematicssymbolsMaximal function0101 mathematicsepäyhtälötAnalysis of PDEs (math.AP)Mathematicsmedia_common
researchProduct

Approximation of Elliptic Hemivariational Inequalities

1999

From the previous chapter we know that there exist many important problems in mechanics in which constitutive laws are expressed by means of nonmonotone, possibly multivalued relations (nonmonotone multivalued stress-strain or reaction-displacement relations,e.g). The resulting mathematical model leads to an inclusion type problem involving multivalued nonmonotone mappings or to a substationary type problem for a nonsmooth, nonconvex superpotential expressed in terms of calculus of variation. It is the aim of this chapter to give a detailed study of a discretization of such a type of problems including the convergence analysis. Here we follow closely Miettinen and Haslinger, 1995, Miettinen…

DiscretizationMathematical analysisConvergence (routing)Variational inequalitySuperpotentialApplied mathematicsCalculus of variationsType (model theory)Bilinear formFinite element methodMathematics
researchProduct