6533b7cefe1ef96bd1256ffa
RESEARCH PRODUCT
Maximal function estimates and self-improvement results for Poincaré inequalities
Juha LehrbäckXiao ZhongAntti V. VähäkangasJuha Kinnunensubject
Discrete mathematicsPure mathematicsGeneral Mathematics010102 general mathematicsAlgebraic geometryharmoninen analyysi01 natural sciencesUniversality (dynamical systems)Sobolev inequalitySobolev spacesymbols.namesakeNumber theoryinequalities0103 physical sciencesPoincaré conjecturesymbolsharmonic analysisMaximal function010307 mathematical physicsDifferentiable function0101 mathematicsfunktionaalianalyysiepäyhtälötMathematicsdescription
Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2018-03-19 |