6533b7cefe1ef96bd1256ffa

RESEARCH PRODUCT

Maximal function estimates and self-improvement results for Poincaré inequalities

Juha LehrbäckXiao ZhongAntti V. VähäkangasJuha Kinnunen

subject

Discrete mathematicsPure mathematicsGeneral Mathematics010102 general mathematicsAlgebraic geometryharmoninen analyysi01 natural sciencesUniversality (dynamical systems)Sobolev inequalitySobolev spacesymbols.namesakeNumber theoryinequalities0103 physical sciencesPoincaré conjecturesymbolsharmonic analysisMaximal function010307 mathematical physicsDifferentiable function0101 mathematicsfunktionaalianalyysiepäyhtälötMathematics

description

Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-201906253440