0000000000037760

AUTHOR

Juha Kinnunen

showing 7 related works from this author

Maximal function estimates and self-improvement results for Poincaré inequalities

2018

Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed

Discrete mathematicsPure mathematicsGeneral Mathematics010102 general mathematicsAlgebraic geometryharmoninen analyysi01 natural sciencesUniversality (dynamical systems)Sobolev inequalitySobolev spacesymbols.namesakeNumber theoryinequalities0103 physical sciencesPoincaré conjecturesymbolsharmonic analysisMaximal function010307 mathematical physicsDifferentiable function0101 mathematicsfunktionaalianalyysiepäyhtälötMathematics
researchProduct

Perron's method for the porous medium equation

2016

O. Perron introduced his celebrated method for the Dirichlet problem for harmonic functions in 1923. The method produces two solution candidates for given boundary values, an upper solution and a lower solution. A central issue is then to determine when the two solutions are actually the same function. The classical result in this direction is Wiener’s resolutivity theorem: the upper and lower solutions coincide for all continuous boundary values. We discuss the resolutivity theorem and the related notions for the porous medium equation ut −∆u = 0

Dirichlet problemApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysiscomparison principlePerron methodFunction (mathematics)Primary 35K55 Secondary 35K65 35K20 31C45obstaclesPorous medium equation01 natural sciencesBoundary values010101 applied mathematicsMathematics - Analysis of PDEsHarmonic functionFOS: Mathematics0101 mathematicsPorous mediumPerron methodAnalysis of PDEs (math.AP)Mathematics
researchProduct

The De Giorgi measure and an obstacle problem related to minimal surfaces in metric spaces

2010

Abstract We study the existence of a set with minimal perimeter that separates two disjoint sets in a metric measure space equipped with a doubling measure and supporting a Poincare inequality. A measure constructed by De Giorgi is used to state a relaxed problem, whose solution coincides with the solution to the original problem for measure theoretically thick sets. Moreover, we study properties of the De Giorgi measure on metric measure spaces and show that it is comparable to the Hausdorff measure of codimension one. We also explore the relationship between the De Giorgi measure and the variational capacity of order one. The theory of functions of bounded variation on metric spaces is us…

Pure mathematicsMathematics(all)General MathematicsApplied Mathematics010102 general mathematicsMathematical analysisBoxing inequalityCaccioppoli setDiscrete measureσ-finite measure01 natural sciencesRelaxed problemCapacitiesTransverse measure0103 physical sciencesComplex measureOuter measureHausdorff measure010307 mathematical physics0101 mathematicsBorel measureFunctions of bounded variationMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

A maximal Function Approach to Two-Measure Poincaré Inequalities

2018

This paper extends the self-improvement result of Keith and Zhong in  Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincare inequality for $$10$$ under a balance condition on the measures. The corresponding result for a maximal Poincare inequality is also considered. In this case the left-hand side in the Poincare inequality is replaced with an integral of a sharp maximal function and the results hold without a balance condition. Moreover, validity of maximal Poincare inequalities is used to characterize the self-improvement of two-measure Poincare inequalities. Examples are constructed to illustrate the role of t…

Pure mathematicsSelf improvementInequalitymedia_common.quotation_subject010102 general mathematicsPoincaré inequality01 natural sciencesMeasure (mathematics)symbols.namesakeDifferential geometryPoincaré inequality0103 physical sciencesPoincaré conjectureself-improvementsymbolsMaximal functionpotentiaaliteoria010307 mathematical physicsGeometry and Topology0101 mathematicsfunktionaalianalyysiepäyhtälötgeodesic two-measure spaceMathematicsmedia_common
researchProduct

Maximal Function Methods for Sobolev Spaces

2021

Sobolev spacePure mathematicsMaximal functionMathematics
researchProduct

REGULARITY OF THE FRACTIONAL MAXIMAL FUNCTION

2003

The purpose of this work is to show that the fractional maximal operator has somewhat unexpected regularity properties. The main result shows that the fractional maximal operator maps -spaces boundedly into certain first-order Sobolev spaces. It is also proved that the fractional maximal operator preserves first-order Sobolev spaces. This extends known results for the Hardy–Littlewood maximal operator.

Sobolev spaceMathematics::Functional AnalysisPure mathematicsWork (thermodynamics)General MathematicsMathematical analysisMaximal operatorMaximal functionMathematicsBulletin of the London Mathematical Society
researchProduct

Higher Order Sobolev-Type Spaces on the Real Line

2014

This paper gives a characterization of Sobolev functions on the real line by means of pointwise inequalities involving finite differences. This is also shown to apply to more general Orlicz-Sobolev, Lorentz-Sobolev, and Lorentz-Karamata-Sobolev spaces.

PointwiseMathematics::Functional AnalysisArticle SubjectReal analysislcsh:Mathematicsta111Mathematical analysisMathematics::Analysis of PDEsFinite differencelcsh:QA1-939Sobolev inequalitySobolev spaceInterpolation spaceSobolev functionsBirnbaum–Orlicz spaceReal lineAnalysisMathematicsJournal of Function Spaces
researchProduct