0000000000037759

AUTHOR

Antti V. Vähäkangas

0000-0001-7135-6782

Maximal function estimates and self-improvement results for Poincaré inequalities

Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed

research product

Complex Analysis and Dynamical Systems VII

research product

Weighted norm inequalities in a bounded domain by the sparse domination method

AbstractWe prove a local two-weight Poincaré inequality for cubes using the sparse domination method that has been influential in harmonic analysis. The proof involves a localized version of the Fefferman–Stein inequality for the sharp maximal function. By establishing a local-to-global result in a bounded domain satisfying a Boman chain condition, we show a two-weight p-Poincaré inequality in such domains. As an application we show that certain nonnegative supersolutions of the p-Laplace equation and distance weights are p-admissible in a bounded domain, in the sense that they support versions of the p-Poincaré inequality.

research product

Self-improvement of weighted pointwise inequalities on open sets

We prove a general self-improvement property for a family of weighted pointwise inequalities on open sets, including pointwise Hardy inequalities with distance weights. For this purpose we introduce and study the classes of $p$-Poincar\'e and $p$-Hardy weights for an open set $\Omega\subset X$, where $X$ is a metric measure space. We also apply the self-improvement of weighted pointwise Hardy inequalities in connection with usual integral versions of Hardy inequalities.

research product

Fractional Hardy-Sobolev type inequalities for half spaces and John domains

As our main result we prove a variant of the fractional Hardy-Sobolev-Maz'ya inequality for half spaces. This result contains a complete answer to a recent open question by Musina and Nazarov. In the proof we apply a new version of the fractional Hardy-Sobolev inequality that we establish also for more general unbounded John domains than half spaces.

research product

The Hajłasz Capacity Density Condition is Self-improving

We prove a self-improvement property of a capacity density condition for a nonlocal Hajlasz gradient in complete geodesic spaces with a doubling measure. The proof relates the capacity density condition with boundary Poincare inequalities, adapts Keith-Zhong techniques for establishing local Hardy inequalities and applies Koskela-Zhong arguments for proving self-improvement properties of local Hardy inequalities. This leads to a characterization of the Hajlasz capacity density condition in terms of a strict upper bound on the upper Assouad codimension of the underlying set, which shows the self-improvement property of the Hajlasz capacity density condition. Open Access funding provided than…

research product

On improved fractional Sobolev–Poincaré inequalities

We study a certain improved fractional Sobolev–Poincaré inequality on domains, which can be considered as a fractional counterpart of the classical Sobolev–Poincaré inequality. We prove the equivalence of the corresponding weak and strong type inequalities; this leads to a simple proof of a strong type inequality on John domains. We also give necessary conditions for the validity of an improved fractional Sobolev–Poincaré inequality, in particular, we show that a domain of finite measure, satisfying this inequality and a ‘separation property’, is a John domain.

research product

Fractional Hardy inequalities and visibility of the boundary

We prove fractional order Hardy inequalities on open sets under a combined fatness and visibility condition on the boundary. We demonstrate by counterexamples that fatness conditions alone are not sufficient for such Hardy inequalities to hold. In addition, we give a short exposition of various fatness conditions related to our main result, and apply fractional Hardy inequalities in connection to the boundedness of extension operators for fractional Sobolev spaces.

research product

Self-improvement of pointwise Hardy inequality

We prove the self-improvement of a pointwise p p -Hardy inequality. The proof relies on maximal function techniques and a characterization of the inequality by curves.

research product

Local maximal operators on fractional Sobolev spaces

In this note we establish the boundedness properties of local maximal operators MG on the fractional Sobolev spaces Ws;p(G) whenever G is an open set in Rn, 0 < s < 1 and 1 < p < 1. As an application, we characterize the fractional (s;p)-Hardy inequality on a bounded open set by a Maz'ya-type testing condition localized to Whitney cubes. pq(G) whenever G is an open set in R n , 0 < s < 1 and 1 < p;q <1. Our main focus lies in the mapping properties of MG on a fractional Sobolev space W s;p (G) with 0 < s < 1 and 1 < p < 1, see Section 2 for the denition or (3) for a survey of this space. The intrinsically dened function space W s;p (G) on a given domain G coincides with the trace space F s …

research product

A maximal Function Approach to Two-Measure Poincaré Inequalities

This paper extends the self-improvement result of Keith and Zhong in  Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincare inequality for $$10$$ under a balance condition on the measures. The corresponding result for a maximal Poincare inequality is also considered. In this case the left-hand side in the Poincare inequality is replaced with an integral of a sharp maximal function and the results hold without a balance condition. Moreover, validity of maximal Poincare inequalities is used to characterize the self-improvement of two-measure Poincare inequalities. Examples are constructed to illustrate the role of t…

research product

Maximal Function Methods for Sobolev Spaces

research product

In between the inequalities of Sobolev and Hardy

We establish both sufficient and necessary conditions for the validity of the so-called Hardy-Sobolev inequalities on open sets of the Euclidean space. These inequalities form a natural interpolating scale between the (weighted) Sobolev inequalities and the (weighted) Hardy inequalities. The Assouad dimension of the complement of the open set turns out to play an important role in both sufficient and necessary conditions.

research product