6533b832fe1ef96bd129ad62

RESEARCH PRODUCT

Local maximal operators on fractional Sobolev spaces

Antti V. VähäkangasHannes Luiro

subject

Trace spaceFunction spaceGeneral MathematicsOpen setSpace (mathematics)01 natural sciencesDomain (mathematical analysis)CombinatoricsHardy inequality0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics46E350101 mathematicsfractional Sobolev spaceMathematicsMathematics::Functional Analysista111010102 general mathematicsMathematical analysis42B25 46E35 47H99Functional Analysis (math.FA)Mathematics - Functional AnalysisSobolev spaceSection (category theory)Mathematics - Classical Analysis and ODEsBounded function47H99010307 mathematical physics42B25local maximal operator

description

In this note we establish the boundedness properties of local maximal operators MG on the fractional Sobolev spaces Ws;p(G) whenever G is an open set in Rn, 0 < s < 1 and 1 < p < 1. As an application, we characterize the fractional (s;p)-Hardy inequality on a bounded open set by a Maz'ya-type testing condition localized to Whitney cubes. pq(G) whenever G is an open set in R n , 0 < s < 1 and 1 < p;q <1. Our main focus lies in the mapping properties of MG on a fractional Sobolev space W s;p (G) with 0 < s < 1 and 1 < p < 1, see Section 2 for the denition or (3) for a survey of this space. The intrinsically dened function space W s;p (G) on a given domain G coincides with the trace space F s pp(G) if and only if G is regular, i.e.,jB(x;r)\Gj' r n

https://dx.doi.org/10.48550/arxiv.1406.1637