0000000000037757

AUTHOR

Juha Lehrbäck

showing 24 related works from this author

Maximal function estimates and self-improvement results for Poincaré inequalities

2018

Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed

Discrete mathematicsPure mathematicsGeneral Mathematics010102 general mathematicsAlgebraic geometryharmoninen analyysi01 natural sciencesUniversality (dynamical systems)Sobolev inequalitySobolev spacesymbols.namesakeNumber theoryinequalities0103 physical sciencesPoincaré conjecturesymbolsharmonic analysisMaximal function010307 mathematical physicsDifferentiable function0101 mathematicsfunktionaalianalyysiepäyhtälötMathematics
researchProduct

Uniqueness of diffusion on domains with rough boundaries

2016

Let $\Omega$ be a domain in $\mathbf R^d$ and $h(\varphi)=\sum^d_{k,l=1}(\partial_k\varphi, c_{kl}\partial_l\varphi)$ a quadratic form on $L_2(\Omega)$ with domain $C_c^\infty(\Omega)$ where the $c_{kl}$ are real symmetric $L_\infty(\Omega)$-functions with $C(x)=(c_{kl}(x))>0$ for almost all $x\in \Omega$. Further assume there are $a, \delta>0$ such that $a^{-1}d_\Gamma^{\delta}\,I\le C\le a\,d_\Gamma^{\delta}\,I$ for $d_\Gamma\le 1$ where $d_\Gamma$ is the Euclidean distance to the boundary $\Gamma$ of $\Omega$. We assume that $\Gamma$ is Ahlfors $s$-regular and if $s$, the Hausdorff dimension of $\Gamma$, is larger or equal to $d-1$ we also assume a mild uniformity property for $\Omega$ i…

Boundary (topology)01 natural sciencesAhlfors regularityCombinatoricsMarkov uniquenessMathematics - Analysis of PDEsHardy inequalityFOS: MathematicsUniqueness0101 mathematicsMathematicsDiscrete mathematicsDirichlet formApplied Mathematicsta111010102 general mathematicsNeighbourhood (graph theory)Lipschitz continuity47D07 35J70 35K65010101 applied mathematicsQuadratic formHausdorff dimensionDomain (ring theory)AnalysisAnalysis of PDEs (math.AP)
researchProduct

Weighted pointwise Hardy inequalities

2009

We introduce the concept of a visual boundary of a domain �¶ �¼ Rn and show that the weighted Hardy inequality  �¶ |u|pd�¶ �A.p  C  �¶ |�Þu|pd�¶ �A, where d�¶(x) = dist(x, �Ý�¶), holds for all u �¸ C �� 0 (�¶) with exponents �A < �A0 when the visual boundary of �¶ is sufficiently large. Here �A0 = �A0(p, n, �¶) is explicit, essentially sharp, and may even be greater than p . 1, which is the known bound for smooth domains. For instance, in the case of the usual von Koch snowflake domain the sharp bound is shown to be �A0 = p . 2 + �E, with �E = log 4/ log 3. These results are based on new pointwise Hardy inequalities.

PointwiseCombinatoricsGeneral MathematicsMathematical analysisA domainBoundary (topology)Koch snowflakeDomain (mathematical analysis)MathematicsJournal of the London Mathematical Society
researchProduct

Assouad Type Dimensions in Geometric Analysis

2021

We consider applications of the dual pair of the (upper) Assouad dimension and the lower (Assouad) dimension in analysis. We relate these notions to other dimensional conditions such as a Hausdorff content density condition and an integrability condition for the distance function. The latter condition leads to a characterization of the Muckenhoupt Ap properties of distance functions in terms of the (upper) Assouad dimension. It is also possible to give natural formulations for the validity of Hardy–Sobolev inequalities using these dual Assouad dimensions, and this helps to understand the previously observed dual nature of certain cases of these inequalities. peerReviewed

osittaisdifferentiaaliyhtälötPure mathematicsLower dimensionGeometric analysisAssouad dimensionAikawa conditionHardy–Sobolev inequalityDimension (graph theory)Hausdorff spaceMuckenhoupt weightCharacterization (mathematics)Type (model theory)Dual (category theory)Content (measure theory)Mathematics::Metric GeometrymittateoriaepäyhtälötMathematicsDual pair
researchProduct

Quasiadditivity of Variational Capacity

2013

We study the quasiadditivity property (a version of superadditivity with a multiplicative constant) of variational capacity in metric spaces with respect to Whitney type covers. We characterize this property in terms of a Mazya type capacity condition, and also explore the close relation between quasiadditivity and Hardy's inequality.

SuperadditivityPure mathematicsProperty (philosophy)Relation (database)Inequalitymetrijärjestelmämedia_common.quotation_subjectmetric spaceHardy's inequalitykapasiteettiType (model theory)Whitney coverFunctional Analysis (math.FA)Mathematics - Functional AnalysisMetric spacePrimary 31E05 31C45 Secondary 46E35 26D15FOS: MathematicsMultiplicative constantAnalysisvariational capacityMathematicsmedia_commonPotential Analysis
researchProduct

Sharp capacity estimates for annuli in weighted R^n and in metric spaces

2017

We obtain estimates for the nonlinear variational capacity of annuli in weighted R^n and in metric spaces. We introduce four different (pointwise) exponent sets, show that they all play fundamental roles for capacity estimates, and also demonstrate that whether an end point of an exponent set is attained or not is important. As a consequence of our estimates we obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion holds in rather general metric spaces, including Carnot groups and many manifolds, but it is just as relevant on weighted R^n. Indeed, to illustrate the sharpness of our estimates, we give several examples of radially weighted R^n, which …

31C45 (Primary) 30C65 30L99 31B15 31C15 31E0 (Secondary)annulusmetric spacequasiconformal mappingMathematical Analysisexponent setsp-admissible weightSobolev spaceradial weightMathematics - Analysis of PDEsAnnulus; Doubling measure; Exponent sets; Metric space; Newtonian space; p-admissible weight; Poincare inequality; Quasiconformal mapping; Radial weight; Sobolev space; Variational capacityMatematisk analysPoincaré inequalitydoubling measureFOS: MathematicsNewtonian spacevariational capacityAnalysis of PDEs (math.AP)
researchProduct

A note on the dimensions of Assouad and Aikawa

2013

We show that in Euclidean space and other regular metric spaces, the notions of dimensions defined by Assouad and Aikawa coincide. In addition, in more general metric spaces, we study the relationship between these two dimensions and a related codimension and give an application of the Aikawa (co)dimension for the Hardy inequalities.

Pure mathematicsAssouad dimensionEuclidean spaceGeneral Mathematicsmetric spaceDimension (graph theory)Mathematical analysista111CodimensionAikawa dimension54F4554E35Metric space26D15Hardy inequalitydoubling measureMathematics::Metric Geometry28A12MathematicsJournal of the Mathematical Society of Japan
researchProduct

Self-improvement of weighted pointwise inequalities on open sets

2020

We prove a general self-improvement property for a family of weighted pointwise inequalities on open sets, including pointwise Hardy inequalities with distance weights. For this purpose we introduce and study the classes of $p$-Poincar\'e and $p$-Hardy weights for an open set $\Omega\subset X$, where $X$ is a metric measure space. We also apply the self-improvement of weighted pointwise Hardy inequalities in connection with usual integral versions of Hardy inequalities.

Pure mathematicsPrimary 35A23 Secondary 42B25 31E05Inequalitymedia_common.quotation_subjectMathematics::Classical Analysis and ODEsOpen setSpace (mathematics)Measure (mathematics)Mathematics - Analysis of PDEsmetrinen avaruusClassical Analysis and ODEs (math.CA)FOS: Mathematicspointwise Hardy inequalitymedia_commonMathematicsPointwiseMathematics::Functional AnalysisSelf improvementmetric spaceweightConnection (mathematics)Hardyn epäyhtälöMathematics - Classical Analysis and ODEsself-improvementMetric (mathematics)maximal operatorAnalysisAnalysis of PDEs (math.AP)Journal of Functional Analysis
researchProduct

Fractional Hardy-Sobolev type inequalities for half spaces and John domains

2018

As our main result we prove a variant of the fractional Hardy-Sobolev-Maz'ya inequality for half spaces. This result contains a complete answer to a recent open question by Musina and Nazarov. In the proof we apply a new version of the fractional Hardy-Sobolev inequality that we establish also for more general unbounded John domains than half spaces.

Mathematics::Functional AnalysisPure mathematicsInequalityApplied MathematicsGeneral Mathematicsmedia_common.quotation_subjectta111Mathematics::Classical Analysis and ODEsMathematics::Analysis of PDEsMathematics::Spectral TheoryType (model theory)Sobolev spacefractional Hardy-Sobolev inequalityHardy-Sobolev-Maz'ya inequalityfunktionaalianalyysiepäyhtälötJohn domainsMathematicsmedia_commonProceedings of the American Mathematical Society
researchProduct

Fractional Hardy inequalities and visibility of the boundary

2013

We prove fractional order Hardy inequalities on open sets under a combined fatness and visibility condition on the boundary. We demonstrate by counterexamples that fatness conditions alone are not sufficient for such Hardy inequalities to hold. In addition, we give a short exposition of various fatness conditions related to our main result, and apply fractional Hardy inequalities in connection to the boundedness of extension operators for fractional Sobolev spaces.

visibility of the boundaryPure mathematicsMathematics::Functional AnalysisInequalityfractional Hardy inequalitiesGeneral Mathematicsmedia_common.quotation_subject010102 general mathematicsVisibility (geometry)46E35 (26D15)Open setMathematics::Classical Analysis and ODEsOrder (ring theory)Boundary (topology)01 natural sciences010101 applied mathematicsMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsExposition (narrative)media_common
researchProduct

Weighted Hardy inequalities and the boundary size

2008

olikheterHardyn epäyhtälötepäyhtälöt
researchProduct

Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions

2023

In a complete metric space equipped with a doubling measure supporting a $p$-Poincar\'e inequality, we prove sharp growth and integrability results for $p$-harmonic Green functions and their minimal $p$-weak upper gradients. We show that these properties are determined by the growth of the underlying measure near the singularity. Corresponding results are obtained also for more general $p$-harmonic functions with poles, as well as for singular solutions of elliptic differential equations in divergence form on weighted $\mathbf{R}^n$ and on manifolds. The proofs are based on a new general capacity estimate for annuli, which implies precise pointwise estimates for $p$-harmonic Green functions…

Mathematics - Analysis of PDEsGeneral MathematicsFOS: MathematicsPrimary: 31C45 Secondary: 30L99 31C12 31C15 31E05 35J08 35J92 46E36 49Q20AnalysisAnalysis of PDEs (math.AP)Journal d'Analyse Mathématique
researchProduct

Hardy inequalities and Assouad dimensions

2017

We establish both sufficient and necessary conditions for weighted Hardy inequalities in metric spaces in terms of Assouad (co)dimensions. Our sufficient conditions in the case where the complement is thin are new even in Euclidean spaces, while in the case of a thick complement we give new formulations for previously known sufficient conditions which reveal a natural duality between these two cases. Our necessary conditions are rather straight-forward generalizations from the unweighted case, but together with some examples they indicate the essential sharpness of our results. In addition, we consider the mixed case where the complement may contain both thick and thin parts.

Pure mathematics26D15 (Primary) 31E05 46E35 (Secondary)Partial differential equationGeneral Mathematics010102 general mathematicsDuality (mathematics)01 natural sciencesFunctional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisMetric spaceAssouad (co)dimensionsMathematics - Classical Analysis and ODEsEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: Mathematicsmetric spaces Hardy inequalities0101 mathematicsAnalysisMathematicsComplement (set theory)
researchProduct

Pointwise Hardy inequalities and uniformly fat sets

2008

We prove that it is equivalent for domain in R n \mathbb {R}^n to admit the pointwise p p -Hardy inequality, have uniformly p p -fat complement, or satisfy a uniform inner boundary density condition.

PointwisePure mathematicsInequalityApplied MathematicsGeneral Mathematicsmedia_common.quotation_subjectMathematical analysisBoundary (topology)Domain (mathematical analysis)media_commonMathematicsComplement (set theory)Proceedings of the American Mathematical Society
researchProduct

The annular decay property and capacity estimates for thin annuli

2016

We obtain upper and lower bounds for the nonlinear variational capacity of thin annuli in weighted $\mathbf{R}^n$ and in metric spaces, primarily under the assumptions of an annular decay property and a Poincar\'e inequality. In particular, if the measure has the $1$-annular decay property at $x_0$ and the metric space supports a pointwise $1$-Poincar\'e inequality at $x_0$, then the upper and lower bounds are comparable and we get a two-sided estimate for thin annuli centred at $x_0$, which generalizes the known estimate for the usual variational capacity in unweighted $\mathbf{R}^n$. Most of our estimates are sharp, which we show by supplying several key counterexamples. We also character…

Pure mathematicsProperty (philosophy)General Mathematicsthin annulusPoincaré inequality01 natural sciencesMeasure (mathematics)Upper and lower boundssymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsMathematicsPointwiseApplied Mathematics010102 general mathematicsmetric spaceMetric Geometry (math.MG)31E05 (Primary) 30L99 31C15 31C45 (Secondary)kapasiteettiSobolev spaceSobolev spaceNonlinear systemMetric spaceannular decay propertyPoincaré inequalitydoubling measuresymbolsupper gradient010307 mathematical physicsweighted RnAnalysis of PDEs (math.AP)Newtonian spacevariational capacity
researchProduct

Fractional Maximal Functions in Metric Measure Spaces

2013

Abstract We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.

fractional sobolev spacePure mathematicsQA299.6-433Applied MathematicsMathematics::Classical Analysis and ODEsMathematics::Analysis of PDEsSpace (mathematics)Lipschitz continuityMeasure (mathematics)Functional Analysis (math.FA)Sobolev spaceMathematics - Functional Analysiscampanato space42B25 46E35metric measure spaceMetric (mathematics)FOS: Mathematicsfractional maximal function46e35Maximal functionGeometry and Topology42b25AnalysisMathematicsAnalysis and Geometry in Metric Spaces
researchProduct

A maximal Function Approach to Two-Measure Poincaré Inequalities

2018

This paper extends the self-improvement result of Keith and Zhong in  Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincare inequality for $$10$$ under a balance condition on the measures. The corresponding result for a maximal Poincare inequality is also considered. In this case the left-hand side in the Poincare inequality is replaced with an integral of a sharp maximal function and the results hold without a balance condition. Moreover, validity of maximal Poincare inequalities is used to characterize the self-improvement of two-measure Poincare inequalities. Examples are constructed to illustrate the role of t…

Pure mathematicsSelf improvementInequalitymedia_common.quotation_subject010102 general mathematicsPoincaré inequality01 natural sciencesMeasure (mathematics)symbols.namesakeDifferential geometryPoincaré inequality0103 physical sciencesPoincaré conjectureself-improvementsymbolsMaximal functionpotentiaaliteoria010307 mathematical physicsGeometry and Topology0101 mathematicsfunktionaalianalyysiepäyhtälötgeodesic two-measure spaceMathematicsmedia_common
researchProduct

In between the inequalities of Sobolev and Hardy

2016

We establish both sufficient and necessary conditions for the validity of the so-called Hardy–Sobolev inequalities on open sets of the Euclidean space. These inequalities form a natural interpolating scale between the (weighted) Sobolev inequalities and the (weighted) Hardy inequalities. The Assouad dimension of the complement of the open set turns out to play an important role in both sufficient and necessary conditions. peerReviewed

Mathematics::Functional AnalysisEuclidean spaceHardy-Sobolev inequalities
researchProduct

Maximal Function Methods for Sobolev Spaces

2021

Sobolev spacePure mathematicsMaximal functionMathematics
researchProduct

Measures with predetermined regularity and inhomogeneous self-similar sets

2016

We show that if $X$ is a uniformly perfect complete metric space satisfying the finite doubling property, then there exists a fully supported measure with lower regularity dimension as close to the lower dimension of $X$ as we wish. Furthermore, we show that, under the condensation open set condition, the lower dimension of an inhomogeneous self-similar set $E_C$ coincides with the lower dimension of the condensation set $C$, while the Assouad dimension of $E_C$ is the maximum of the Assouad dimensions of the corresponding self-similar set $E$ and the condensation set $C$. If the Assouad dimension of $C$ is strictly smaller than the Assouad dimension of $E$, then the upper regularity dimens…

Pure mathematicsAssouad dimensionGeneral MathematicsOpen set01 natural sciencesMeasure (mathematics)Complete metric space54E35010305 fluids & plasmasSet (abstract data type)Dimension (vector space)0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematicsinhomogeneous self-similar setMathematics::Metric Geometry28A200101 mathematicsMathematics010102 general mathematicsta111doubling metric space54F45lower dimensionMathematics - Classical Analysis and ODEs28A75uniform perfectness
researchProduct

Weighted Hardy inequalities beyond Lipschitz domains

2014

It is a well-known fact that in a Lipschitz domain \Omega\subset R^n a p-Hardy inequality, with weight d(x,\partial\Omega)^\beta, holds for all u\in C_0^\infty(\Omega) whenever \beta<p-1. We show that actually the same is true under the sole assumption that the boundary of the domain satisfies a uniform density condition with the exponent \lambda=n-1. Corresponding results also hold for smaller exponents, and, in fact, our methods work in general metric spaces satisfying standard structural assumptions.

Pure mathematicsMathematics::Functional AnalysisHausdorff-sisältöApplied MathematicsGeneral Mathematicsmetric spaceBoundary (topology)LambdaLipschitz continuityOmega46E35 26D15Domain (mathematical analysis)Functional Analysis (math.FA)Mathematics - Functional AnalysisMetric spacemetrinen avaruusHardyn epäyhtälöuniform fatnessLipschitz domainHardy inequalityHausdorff contenttasainen paksuusExponentFOS: MathematicsMathematics
researchProduct

Existence and almost uniqueness for p -harmonic Green functions on bounded domains in metric spaces

2020

We study ($p$-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive capacity, and that they satisfy very precise capacitary identities for superlevel sets. Suitably normalized singular functions are called Green functions. Uniqueness of Green functions is largely an open problem beyond unweighted $\mathbf{R}^n$, but we show that all Green functions (in a given domain and with the same singularity) are comparable. As a consequence, for $p$-harmonic functions with a given pole we obtain a similar comparison result near the pole. Various c…

Pure mathematicsCapacitary potential; Doubling measure; Metric space; p-harmonic Green function; Poincar? inequality; Singular function31C45 (Primary) 30L99 31C15 31E05 35J92 49Q20 (Secondary)Harmonic (mathematics)Mathematical Analysis01 natural sciencesMeasure (mathematics)Domain (mathematical analysis)Mathematics - Analysis of PDEscapacitary potentialMatematisk analysFOS: MathematicsUniqueness0101 mathematicsMathematicsComplement (set theory)p-harmonicApplied Mathematics010102 general mathematicsmetric spacemetriset avaruudet010101 applied mathematicsMetric spacePoincaré inequalityBounded functionMetric (mathematics)doubling measurepotentiaaliteoriasingular functiongreen functionAnalysisAnalysis of PDEs (math.AP)
researchProduct

Sharp capacity estimates for annuli in weighted $$\mathbf {R}^n$$ R n and in metric spaces

2016

We obtain estimates for the nonlinear variational capacity of annuli in weighted $$\mathbf {R}^n$$ and in metric spaces. We introduce four different (pointwise) exponent sets, show that they all play fundamental roles for capacity estimates, and also demonstrate that whether an end point of an exponent set is attained or not is important. As a consequence of our estimates we obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion holds in rather general metric spaces, including Carnot groups and many manifolds, but it is just as relevant on weighted $$\mathbf {R}^n$$ . Indeed, to illustrate the sharpness of our estimates, we give several examples of …

PointwiseMathematics(all)Pure mathematicsEnd pointGeneral Mathematics010102 general mathematicsZero (complex analysis)01 natural sciences010101 applied mathematicsSet (abstract data type)Metric spaceNonlinear systemsymbols.namesakesymbolsExponent0101 mathematicsCarnot cycleMathematicsMathematische Zeitschrift
researchProduct

In between the inequalities of Sobolev and Hardy

2015

We establish both sufficient and necessary conditions for the validity of the so-called Hardy-Sobolev inequalities on open sets of the Euclidean space. These inequalities form a natural interpolating scale between the (weighted) Sobolev inequalities and the (weighted) Hardy inequalities. The Assouad dimension of the complement of the open set turns out to play an important role in both sufficient and necessary conditions.

Pure mathematicsInequalitymedia_common.quotation_subjectDimension (graph theory)Open set35A23 (26D15 46E35)Scale (descriptive set theory)01 natural sciencesSobolev inequalityMathematics - Analysis of PDEsEuclidean spaceClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsmedia_commonComplement (set theory)MathematicsMathematics::Functional AnalysisEuclidean space010102 general mathematicsMathematical analysista111010101 applied mathematicsSobolev spaceMathematics - Classical Analysis and ODEsHardy-Sobolev inequalitiesAnalysisAnalysis of PDEs (math.AP)
researchProduct