6533b85bfe1ef96bd12bbf9a

RESEARCH PRODUCT

Weighted Hardy inequalities beyond Lipschitz domains

Juha Lehrbäck

subject

Pure mathematicsMathematics::Functional AnalysisHausdorff-sisältöApplied MathematicsGeneral Mathematicsmetric spaceBoundary (topology)LambdaLipschitz continuityOmega46E35 26D15Domain (mathematical analysis)Functional Analysis (math.FA)Mathematics - Functional AnalysisMetric spacemetrinen avaruusHardyn epäyhtälöuniform fatnessLipschitz domainHardy inequalityHausdorff contenttasainen paksuusExponentFOS: MathematicsMathematics

description

It is a well-known fact that in a Lipschitz domain \Omega\subset R^n a p-Hardy inequality, with weight d(x,\partial\Omega)^\beta, holds for all u\in C_0^\infty(\Omega) whenever \beta<p-1. We show that actually the same is true under the sole assumption that the boundary of the domain satisfies a uniform density condition with the exponent \lambda=n-1. Corresponding results also hold for smaller exponents, and, in fact, our methods work in general metric spaces satisfying standard structural assumptions.

https://dx.doi.org/10.48550/arxiv.1209.0588