0000000000037758

AUTHOR

Xiao Zhong

showing 20 related works from this author

Maximal function estimates and self-improvement results for Poincaré inequalities

2018

Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed

Discrete mathematicsPure mathematicsGeneral Mathematics010102 general mathematicsAlgebraic geometryharmoninen analyysi01 natural sciencesUniversality (dynamical systems)Sobolev inequalitySobolev spacesymbols.namesakeNumber theoryinequalities0103 physical sciencesPoincaré conjecturesymbolsharmonic analysisMaximal function010307 mathematical physicsDifferentiable function0101 mathematicsfunktionaalianalyysiepäyhtälötMathematics
researchProduct

Maximal regularity via reverse Hölder inequalities for elliptic systems of n-Laplace type involving measures

2008

In this note, we consider the regularity of solutions of the nonlinear elliptic systems of n-Laplacian type involving measures, and prove that the gradients of the solutions are in the weak Lebesgue space Ln,∞. We also obtain the a priori global and local estimates for the Ln,∞-norm of the gradients of the solutions without using BMO-estimates. The proofs are based on a new lemma on the higher integrability of functions.

Pure mathematicsNonlinear systemLemma (mathematics)Laplace transformElliptic systemsGeneral MathematicsMathematical analysisMathematicsofComputing_NUMERICALANALYSISStandard probability spaceA priori and a posterioriType (model theory)Mathematical proofMathematics
researchProduct

Bonnesenʼs inequality for John domains in Rn

2012

Abstract We prove sharp quantitative isoperimetric inequalities for John domains in R n . We show that the Bonnesen-style inequalities hold true in R n under the John domain assumption which rules out cusps. Our main tool is a proof of the isoperimetric inequality for symmetric domains which gives an explicit estimate for the isoperimetric deficit. We use the sharp quantitative inequalities proved in Fusco et al. (2008) [7] and Fuglede (1989) [4] to reduce our problem to symmetric domains.

Pure mathematicsJohn domainInequalitymedia_common.quotation_subjectMathematical analysisIsoperimetric dimensionQuasiconformal mapDomain (mathematical analysis)Quantitative isoperimetric inequalityMathematics::Metric GeometryIsoperimetric inequalityAnalysismedia_commonMathematicsJournal of Functional Analysis
researchProduct

Gradient regularity for elliptic equations in the Heisenberg group

2009

Abstract We give dimension-free regularity conditions for a class of possibly degenerate sub-elliptic equations in the Heisenberg group exhibiting super-quadratic growth in the horizontal gradient; this solves an issue raised in [J.J. Manfredi, G. Mingione, Regularity results for quasilinear elliptic equations in the Heisenberg group, Math. Ann. 339 (2007) 485–544], where only dimension dependent bounds for the growth exponent are given. We also obtain explicit a priori local regularity estimates, and cover the case of the horizontal p-Laplacean operator, extending some regularity proven in [A. Domokos, J.J. Manfredi, C 1 , α -regularity for p-harmonic functions in the Heisenberg group for …

Mathematics - Differential GeometryMathematics(all)Pure mathematicsp-LaplaceanGeneral MathematicsOperator (physics)Mathematical analysisDegenerate energy levelsHeisenberg groupWeak solutions35J60RegularityElliptic operatorMathematics - Analysis of PDEsDifferential Geometry (math.DG)Cover (topology)Euclidean geometryFOS: MathematicsHeisenberg groupExponentLinear equationAnalysis of PDEs (math.AP)MathematicsAdvances in Mathematics
researchProduct

A short proof of the self-improving regularity of quasiregular mappings

2005

. The theoryof quasiregular mappings is a central topic in modern analysis withimportant connections to a variety of topics as elliptic partial differen-tial equations, complex dynamics, differential geometry and calculus ofvariations [13] [10].A remarkable feature of quasiregular mappings is the self-improvingregularity. In 1957 [2], Bojarski proved that for planar quasiregularmappings, there exists an exponent

Feature (linguistics)Complex dynamicsPure mathematicsApplied MathematicsGeneral MathematicsExistential quantificationMathematical analysisExponentVariety (universal algebra)MathematicsProceedings of the American Mathematical Society
researchProduct

On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids

2007

In this paper we discuss a system of partial differential equations describing the steady flow of an incompressible fluid and prove the existence of a strong solution under suitable assumptions on the data. In the 2D-case this solution turns out to be of class C^{1,\alpha}.

Algebra and Number TheoryPartial differential equationDifferential equationApplied MathematicsMathematical analysis510Physics::Fluid DynamicsStrong solutionsGeneralized Newtonian fluidFlow (mathematics)CompressibilityNewtonian fluidAnalysisMathematicsSt. Petersburg Mathematical Journal
researchProduct

De Giorgi–Nash–Moser Theory

2015

We consider the second-order, linear, elliptic equations with divergence structure $$\mathrm{div} (\mathbb{A}(x)\nabla u(x))\;=\;\sum\limits^n_{i,j=1}\;\partial_{x_{i}}(a_{ij}(x)\partial_{x_{j}}u(x))\;=\;0.$$

Sobolev spacePhysicsPure mathematicsWeak solutionStructure (category theory)Nabla symbolDivergence (statistics)Harnack's inequalitySobolev inequality
researchProduct

Hardy’s inequality and the boundary size

2002

We establish a self-improving property of the Hardy inequality and an estimate on the size of the boundary of a domain supporting a Hardy inequality.

Hölder's inequalityKantorovich inequalityMathematics::Functional AnalysisPure mathematicsInequalityMathematics::Complex VariablesApplied MathematicsGeneral Mathematicsmedia_common.quotation_subjectMathematical analysisMathematics::Classical Analysis and ODEsBoundary (topology)Mathematics::Spectral TheoryLog sum inequalityRearrangement inequalityCauchy–Schwarz inequalityHardy's inequalityMathematicsmedia_commonProceedings of the American Mathematical Society
researchProduct

Discontinuous solutions of linear, degenerate elliptic equations

2008

Abstract We give examples of discontinuous solutions of linear, degenerate elliptic equations with divergence structure. These solve positively conjectures of De Giorgi.

Mathematics(all)Applied MathematicsGeneral MathematicsWeak solutionMathematical analysisDegenerate energy levelsStructure (category theory)Degenerate equationDegenerate elliptic equationsWeak solutionsElliptic curveDivergence (statistics)Linear equationContinuityMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Variational integrals with a wide range of anisotropy

2012

Range (mathematics)Algebra and Number TheoryApplied MathematicsMathematical analysisAnisotropyAnalysis510MathematicsSt. Petersburg Mathematical Journal
researchProduct

Continuity of solutions of linear, degenerate elliptic equations

2009

We consider the simplest form of a second order, linear, degenerate, divergence structure equation in the plane. Under an integrability condition on the degenerate function, we prove that the solutions are continuous.

AlgebraMathematics (miscellaneous)Plane (geometry)Mathematical analysisStructure equationDegenerate energy levelsOrder (group theory)Function (mathematics)Divergence (statistics)Theoretical Computer ScienceMathematicsANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
researchProduct

Mappings of finite distortion: Sharp Orlicz-conditions

2003

We establish continuity, openness and discreteness, and the condition $(N)$ for mappings of finite distortion under minimal integrability assumptions on the distortion.

General MathematicsDistortionMathematical analysisData_MISCELLANEOUSComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONData_CODINGANDINFORMATIONTHEORYfinite distortionTopologycontinuityopenness and discretenessMathematicsOrlicz conditions30C65
researchProduct

A note on mappings of finite distortion: The sharp modulus of continuity

2005

General MathematicsDistortionMathematical analysisTopologyModulus of continuity30C65MathematicsMichigan Mathematical Journal
researchProduct

Geometric rigidity of conformal matrices

2009

We provide a geometric rigidity estimate a la Friesecke-James-Muller for conformal matrices. Namely, we replace SO(n) by a arbitrary compact subset of conformal matrices, bounded away from 0 and invariant under SO(n), and rigid motions by Mobius transformations.

Pure mathematicsMathematics (miscellaneous)Bounded functionConformal mapInvariant (mathematics)Theoretical Computer ScienceMathematicsANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
researchProduct

The Poincaré inequality is an open ended condition

2008

Let p > 1 and let (X,d,µ) be a complete metric measure space with µ Borel and doubling that admits a (1,p)-Poincare inequality. Then there exists e > 0 such that (X,d,µ) admits a (1,q)-Poincare inequality for every q > p - e, quantitatively.

Combinatoricssymbols.namesakeMathematics (miscellaneous)Mathematical analysisMetric (mathematics)symbolsPoincaré inequalityStatistics Probability and UncertaintyMinkowski inequalitySpace (mathematics)Measure (mathematics)MathematicsAnnals of Mathematics
researchProduct

Mappings of finite distortion: Reverse inequalities for the Jacobian

2007

Let f be a nonconstant mapping of finite distortion. We establish integrability results on 1/Jf by studying weights that satisfy a weak reverse Holder inequality where the associated constant can depend on the ball in question. Here Jf is the Jacobian determinant of f.

symbols.namesakePure mathematicsDifferential geometryFourier analysisMathematical analysisJacobian matrix and determinantsymbolsGeometry and TopologyBall (mathematics)Reverse holder inequalityMathematicsJournal of Geometric Analysis
researchProduct

Removable sets for continuous solutions of quasilinear elliptic equations

2001

We show that sets of n − p + α ( p − 1 ) n-p+\alpha (p-1) Hausdorff measure zero are removable for α \alpha -Hölder continuous solutions to quasilinear elliptic equations similar to the p p -Laplacian. The result is optimal. We also treat larger sets in terms of a growth condition. In particular, our results apply to quasiregular mappings.

Null setElliptic curveHarmonic functionApplied MathematicsGeneral MathematicsMathematical analysisHölder conditionLaplace operatorMathematicsHarnack's inequalityProceedings of the American Mathematical Society
researchProduct

Mappings of finite distortion: the degree of regularity

2005

This paper investigates the self-improving integrability properties of the so-called mappings of finite distortion. Let K(x)⩾1 be a measurable function defined on a domain Ω⊂Rn,n⩾2, and such that exp(βK(x))∈Lloc1(Ω), β>0. We show that there exist two universal constants c1(n),c2(n) with the following property: Let f be a mapping in Wloc1,1(Ω,Rn) with |Df(x)|n⩽K(x)J(x,f) for a.e. x∈Ω and such that the Jacobian determinant J(x,f) is locally in L1log−c1(n)βL. Then automatically J(x,f) is locally in L1logc2(n)βL(Ω). This result constitutes the appropriate analog for the self-improving regularity of quasiregular mappings and clarifies many other interesting properties of mappings of finite disto…

Mathematics(all)Class (set theory)Pure mathematicsDegree (graph theory)Measurable functionPhysical constantGeneral MathematicsMathematical analysisDistortion (mathematics)symbols.namesakeBounded functionJacobian matrix and determinantsymbolsGravitational singularityMathematicsAdvances in Mathematics
researchProduct

Mappings of finite distortion: a new proof for discreteness and openness

2008

We give a new and elementary proof of the known result: a non-constant mapping of finite distortion f : Ω ⊂ ℝn → ℝn is discrete and open, provided that its distortion function if n = 2 and that for some p > n − 1 if n ≥ 3.

Distortion functionDiscrete mathematicsGeneral MathematicsDistortionElementary proofComputingMethodologies_DOCUMENTANDTEXTPROCESSINGMathematicsProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

C1,α-regularity for variational problems in the Heisenberg group

2017

We study the regularity of minima of scalar variational integrals of $p$-growth, $1<p<\infty$, in the Heisenberg group and prove the H\"older continuity of horizontal gradient of minima.

osittaisdifferentiaaliyhtälötNumerical AnalysisregularityHeisenberg groupsApplied Mathematicsp-Laplacian010102 general mathematicsScalar (mathematics)subelliptic equationsHölder condition01 natural sciences35H20 35J70010101 applied mathematicsMaxima and minimaMathematics - Analysis of PDEsweak solutionsPhysics::Atomic and Molecular Clustersp-LaplacianHeisenberg group0101 mathematicsAnalysisMathematical physicsMathematicsAnalysis &amp; PDE
researchProduct