Search results for "INFINITE-MOMENTUM"

showing 3 items of 3 documents

The one loop gluon emission light cone wave function

2017

Light cone perturbation theory has become an essential tool to calculate cross sections for various small-$x$ dilute-dense processes such as deep inelastic scattering and forward proton-proton and proton-nucleus collisions. Here we set out to do one loop calculations in an explicit helicity basis in the four dimensional helicity scheme. As a first process we calculate light cone wave function for one gluon emission to one-loop order in Hamiltonian perturbation theory on the light front. We regulate ultraviolet divergences with transverse dimensional regularization and soft divergences with using a cut-off on longitudinal momentum. We show that when all the renormalization constants are comb…

COLLISIONSParticle physicsNuclear TheoryRENORMALIZATIONQUANTUM ELECTRODYNAMICSGeneral Physics and AstronomyFOS: Physical sciencesloop calculations114 Physical sciences01 natural scienceslight cone perturbation theoryRenormalizationNuclear Theory (nucl-th)Dimensional regularizationHigh Energy Physics - Phenomenology (hep-ph)INFINITE-MOMENTUMLight cone0103 physical sciencesSCATTERINGHelicity basis010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysicsCoupling constantgluon emissionta114010308 nuclear & particles physicsCOLOR GLASS CONDENSATEDeep inelastic scatteringFRONT QCDHelicityEVOLUTIONHigh Energy Physics - PhenomenologyCHROMODYNAMICSQuantum electrodynamicsgluon saturation
researchProduct

Unequal rapidity correlators in the dilute limit of the JIMWLK evolution

2019

We study unequal rapidity correlators in the stochastic Langevin picture of Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) evolution in the color glass condensate effective field theory. We discuss a diagrammatic interpretation of the long-range con elators. By separately evolving the Wilson lines in the direct and complex conjugate amplitudes, we use the formalism to study two-particle production at large rapidity separations. We show that the evolution between the rapidities of the two produced particles can be expressed as a linear equation, even in the full nonlinear limit. We also show how the Langevin formalism for two-particle correlations reduces to a Balitsky-Fadin…

COLLISIONSPosition and momentum spacehiukkasfysiikkafield theory114 Physical sciences01 natural sciencesColor-glass condensatenuclear physicsINFINITE-MOMENTUM0103 physical sciencesEQUATIONEffective field theorySCATTERINGRapidity010306 general physicsMathematical physicsPhysicsComplex conjugate010308 nuclear & particles physicsStochastic processCOLOR GLASS CONDENSATENONLINEAR GLUON EVOLUTIONNonlinear systemDIPOLE PICTUREkvanttikenttäteoriaydinfysiikkaLinear equationPhysical Review D
researchProduct

Massive quarks in NLO dipole factorization for DIS : Longitudinal photon

2021

In this work, we will present the first complete calculation of the one-loop longitudinal photon-to-quark-antiquark light cone wave function, with massive quarks. The quark masses are renormalized in the pole mass scheme. The result is used to calculate the next-to-leading order correction to the high energy Deep Inelastic Scattering longitudinal structure function on a dense target in the dipole factorization framework. For massless quarks the next-to-leading order correction was already known to be sizeable, and our result makes it possible to evaluate it also for massive quarks.

QuarkParticle physicsPhotonNuclear TheoryHigh Energy Physics::LatticeNuclear TheoryQUANTUM ELECTRODYNAMICSFOS: Physical scienceshiukkasfysiikka01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)FactorizationLight coneINFINITE-MOMENTUM0103 physical sciencesSCATTERINGPICTURE010306 general physicsWave functionPhysics010308 nuclear & particles physicskvarkitLIGHT-FRONT QCDHigh Energy Physics::PhenomenologyDeep inelastic scatteringINVARIANCEMassless particleDipoleHigh Energy Physics - PhenomenologykvanttiväridynamiikkaHigh Energy Physics::ExperimentBK EVOLUTION
researchProduct