Search results for "INSULATOR"
showing 10 items of 228 documents
Spatial quantum noise interferometry in expanding ultracold atom clouds
2005
It is ten years since the exotic form of matter known as a Bose–Einstein condensate was first created. It was the birth of ultra-low-temperature physics, and practitioners gathered last month in Banff, Canada, to celebrate and discuss the latest news, as Karen Fox reports. And this week a new development that could have a major impact in the field is announced. In the 1950s, Hanbury Brown and Twiss showed that it is possible to measure angular sizes of astronomical radio sources from correlations of signal intensities in independent detectors. ‘HBT interferometry’ later became a key technique in quantum optics, and now it has been harnessed to identify a quantum phase of ultracold bosonic a…
Microbeam SEE Analysis of MIM Capacitors for GaN Amplifiers
2018
Broad-beam and microbeam single-event effect tests were performed on metal–insulator–metal capacitors with three different thicknesses of silicon nitride (Si3N4) dielectric insulator: 250, 500, and 750 nm. The broad-beam tests indicated that the devices with the thicker, 500- and 750-nm dielectric did not have a greater breakdown voltage. The surrounding structures of the capacitor were suspected to be a possible cause. Microbeam techniques made it possible to localize the failure location for the 500- and 750-nm devices. The failure occurs in the air bridge structure connected to the top capacitor plate, which can therefore be considered as an edge effect, while for the 250-nm devices, the…
Entanglement control via reservoir engineering in ultracold atomic gases
2013
We study the entanglement of two impurity qubits immersed in a Bose-Einstein condensate (BEC) reservoir. This open quantum system is particularly interesting because the reservoir and system parameters are easily controllable and the reduced dynamics is highly non-Markovian. We show how the model allows for interpolation between a common dephasing scenario and an independent dephasing scenario by simply modifying the wavelength of the superlattice superposed to the BEC, and how this influences the dynamical properties of the impurities. We demonstrate the existence of very rich entanglement dynamics correspondent to different values of reservoir parameters, including phenomena such as entan…
Active plasmonics in WDM traffic switching applications
2012
With metal stripes being intrinsic components of plasmonic waveguides, plasmonics provides a "naturally" energy-efficient platform for merging broadband optical links with intelligent electronic processing, instigating a great promise for low-power and small-footprint active functional circuitry. The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the …
Humidity Insensitive Conductometric Sensors for Ammonia Sensing
2014
Interest in molecular materials has been driven in large part by their various and prosperous applications, especially in the domain of organic electronics, where they offer many advantages as well as alternative approaches compared to their inorganic counterparts. Most of conductometric transducers are resistors[[ and transistors[[[, but rarely diodes[6]. In our laboratory, we designed and characterized new molecular material based devices. Molecular Semiconductor Doped Insulator (MSDI) heterojunctions were built around a heterojunction between a Molecular Semiconductor (MS) and a Doped Insulator (DI)[7][8]. This new device exhibits interesting electronic properties that allow ammonia sens…
Giant magnetoresistance in semiconducting DyNiBi
2008
Abstract The semiconducting half-Heulser compound DyNiBi shows a negative giant magnetoresistance (GMR) below 200 K. Except for a weak deviation, this magnetoresistance scales roughly with the square of the magnetization in the paramagnetic state, and is related to the metal–insulator transition. At low temperature, a positive magnetoresistance is found, which can be suppressed by high fields. The magnitude of the positive magnetoresistance changes slightly with the amount of impurity phase.
Antiferromagnetic order competing with topological state in CexBi2−xTe3
2015
The topological surface states in three-dimensional topological insulators are easily tuned by chemical doping, especially by magnetic impurities. We prepared single crystals of CexBi2−xTe3 with various x (=0.04, 0.06, 0.08, 0.10, and 0.12). The obtained crystals were characterized by X-ray diffraction and scanning electron microscopy. The magnetic susceptibility data revealed that the Ce atoms are well substituted for Bi into Bi2Te3. From the Curie-Weiss fits, we observed that the effective magnetic moments μeff are close to 2.54 μB for free Ce ion, and the paramagnetic Curie-Weiss temperatures θp are negatively increased from 2.87 K to −59.3 K with increasing x. The magnetization data cle…
Proposal to Detect Dark Matter using Axionic Topological Antiferromagnets
2019
Antiferromagnetically doped topological insulators (A-TI) are among the candidates to host dynamical axion fields and axion-polaritons; weakly interacting quasiparticles that are analogous to the dark axion, a long sought after candidate dark matter particle. Here we demonstrate that using the axion quasiparticle antiferromagnetic resonance in A-TI's in conjunction with low-noise methods of detecting THz photons presents a viable route to detect axion dark matter with mass 0.7 to 3.5 meV, a range currently inaccessible to other dark matter detection experiments and proposals. The benefits of this method at high frequency are the tunability of the resonance with applied magnetic field, and t…
The multimodal detection as a tool for molecular material-based gas sensing
2013
Abstract The adsorption of a target gas on a material induces a change in several physical characteristics, such as the dielectric constant, the work function or the conductivity. The use of different transducers sensitive to the variation of these parameters appears to be a relevant methodology worthy of investigation. In the field of sensors, molecular materials present interesting and potentially valuable features as sensing elements for real gas sensor applications. In this article, we review the different types of conductimetric transducers and also show how a molecular material-based microwave transducer can be used for gas sensing. Among conductimetric transducers, resistors have bee…
Existence of zero-energy impurity states in different classes of topological insulators and superconductors and their relation to topological phase t…
2015
We consider the effects of impurities on topological insulators and superconductors. We start by identifying the general conditions under which the eigenenergies of an arbitrary Hamiltonian H belonging to one of the Altland-Zirnbauer symmetry classes undergo a robust zero energy crossing as a function of an external parameter which can be, for example, the impurity strength. We define a generalized root of \det H, and use it to predict or rule out robust zero-energy crossings in all symmetry classes. We complement this result with an analysis based on almost degenerate perturbation theory, which allows a derivation of the asymptotic low-energy behavior of the ensemble averaged density of st…