Search results for "INSULATOR"

showing 10 items of 228 documents

Topological Insulators from a Chemist’s Perspective

2012

Topology and chemistry are deeply entangled subjects, whichmanifests in the way chemists like to think and approachproblems. Although not at first glance, topology allows thecategorizationoffundamentalinherentpropertiesofthehugenumber of different chemical compounds, carving out theunique features of a class of materials of different complexity,a topic which Turro worked out in his treatise on geometricaland topological thinking in chemistry.

Class (set theory)Perspective (geometry)CarvingChemical physicsTopological insulatorGeneral MedicineGeneral ChemistryChemistry (relationship)ChemistCatalysisTopology (chemistry)EpistemologyAngewandte Chemie International Edition
researchProduct

Floquet engineering of magnetism in topological insulator thin films

2023

Dynamic manipulation of magnetism in topological materials is demonstrated here via a Floquet engineering approach using circularly polarized light. Increasing the strength of the laser field, besides the expected topological phase transition, the magnetically doped topological insulator thin film also undergoes a magnetic phase transition from ferromagnetism to paramagnetism, whose critical behavior strongly depends on the quantum quenching. In sharp contrast to the equilibrium case, the non-equilibrium Curie temperatures vary for different time scale and experimental setup, not all relying on change of topology. Our discoveries deepen the understanding of the relationship between topology…

Condensed Matter - Materials ScienceFloquet theoryCondensed Matter - Mesoscale and Nanoscale PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter PhysicsSettore FIS/03 - Fisica Della MateriaElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceMesoscale and Nanoscale Physics (cond-mat.mes-hall)ElectrochemistryMaterials ChemistryElectrical and Electronic Engineeringmagnetically doped topological insulator thin film
researchProduct

Full angular dependence of the spin Hall and ordinary magnetoresistance in epitaxial antiferromagnetic NiO(001)/Pt thin films

2018

We report the observation of the three-dimensional angular dependence of the spin Hall magnetoresistance (SMR) in a bilayer of the epitaxial antiferromagnetic insulator NiO(001) and the heavy metal Pt, without any ferromagnetic element. The detected angular-dependent longitudinal and transverse magnetoresistances are measured by rotating the sample in magnetic fields up to 11 T, along three orthogonal planes (xy-, yz- and xz-rotation planes, where the z-axis is orthogonal to the sample plane). The total magnetoresistance has contributions arising from both the SMR and ordinary magnetoresistance. The onset of the SMR signal occurs between 1 and 3 T and no saturation is visible up to 11 T. Th…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsMagnetoresistance530 PhysicsNon-blocking I/OMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesMagnetostrictionInsulator (electricity)02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy530 Physik01 natural sciencesCondensed Matter::Materials ScienceAmplitude0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsThin film010306 general physics0210 nano-technology
researchProduct

Identifying the origin of the nonmonotonic thickness dependence of spin-orbit torque and interfacial Dzyaloshinskii-Moriya interaction in a ferrimagn…

2020

Electrical manipulation of magnetism via spin-orbit torques (SOTs) promises efficient spintronic devices. In systems comprising magnetic insulators and heavy metals, SOTs have started to be investigated only recently, especially in systems with interfacial Dzyaloshinskii-Moriya interaction (iDMI). Here, we quantitatively study the SOT efficiency and iDMI in a series of gadolinium gallium garnet (GGG) / thulium iron garnet (TmIG) / platinum (Pt) heterostructures with varying TmIG and Pt thicknesses. We find that the non-monotonic SOT efficiency as a function of the magnetic layer thickness is not consistent with the 1/thickness dependence expected from a simple interfacial SOT mechanism. Mor…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsSpintronics530 PhysicsMagnetismEnergy level splittingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGadolinium gallium garnetInsulator (electricity)Heterojunction02 engineering and technologyElectron530 Physik021001 nanoscience & nanotechnology01 natural scienceschemistry.chemical_compoundchemistryFerrimagnetismMagnet0103 physical sciences010306 general physics0210 nano-technologySpin orbit torquePhysical Review B
researchProduct

Defect-Induced Orbital Polarization and Collapse of Orbital Order in Doped Vanadium Perovskites

2018

We explore mechanisms of orbital order decay in doped Mott insulators $R_{1-x}$(Sr,Ca)$_x$VO$_3$ ($R=\,$Pr,Y,La) caused by charged (Sr,Ca) defects. Our unrestricted Hartree-Fock analysis focuses on the combined effect of random, charged impurities and associated doped holes up to $x=0.5$. The study is based on a generalized multi-band Hubbard model for the relevant vanadium $t_{2g}$ electrons, and includes the long-range (i) Coulomb potentials of defects and (ii) electron-electron interactions. We show that the rotation of occupied $t_{2g}$ orbitals, induced by the electric field of defects, is a very efficient perturbation that largely controls the suppression of orbital order in these com…

Condensed Matter - Materials ScienceMaterials scienceStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsHubbard modelMott insulatorDopingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyElectronKinetic energy01 natural sciencesSpectral lineCondensed Matter - Strongly Correlated ElectronsAtomic orbitalSuperexchange0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physics
researchProduct

Prediction of Weak Topological Insulators in Layered Semiconductors

2012

We report the discovery of weak topological insulators by ab initio calculations in a honeycomb lattice. We propose a structure with an odd number of layers in the primitive unit-cell as a prerequisite for forming weak topological insulators. Here, the single-layered KHgSb is the most suitable candidate for its large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Though the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as…

Condensed Matter - Materials ScienceMaterials scienceStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsbusiness.industryBand gapMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyPrimitive cell02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Strongly Correlated ElectronsSemiconductorTopological insulator0103 physical sciencesTopological orderCondensed Matter::Strongly Correlated ElectronsCharge transfer insulators010306 general physics0210 nano-technologybusinessSurface statesStacking faultPhysical Review Letters
researchProduct

Heusler Compounds—A Material Class With Exceptional Properties

2011

The class of Heusler compounds, including the XYZ and the X2YZ compounds, has not only an endless number of members, but also a vast variety of properties can be found in this class of materials, ranging from semiconductors, half-metallic ferromagnets, superconductors, and topological insulators to shape memory alloys. With this review article, we would like to provide an overview of Heusler compounds, focusing on their structure, properties, and potential applications.

Condensed Matter::Materials ScienceClass (set theory)Materials scienceFerromagnetismSpintronicsCondensed matter physicsTopological insulatorSemiconductor materialsCondensed Matter::Strongly Correlated ElectronsMagnetic semiconductorElectrical and Electronic EngineeringElectronic Optical and Magnetic MaterialsIEEE Transactions on Magnetics
researchProduct

Realistic investigations of correlated electron systems with LDA + DMFT

2006

Conventional band structure calculations in the local density approximation (LDA) [1–3] are highly successful for many materials, but miss important aspects of the physics and energetics of strongly correlated electron systems, such as transition metal oxides and f-electron systems displaying, e.g., Mott insulating and heavy quasiparticle behavior. In this respect, the LDA + DMFT approach which merges LDA with a modern many-body approach, the dynamical mean-field theory (DMFT), has proved to be a breakthrough for the realistic modeling of correlated materials. Depending on the strength of the electronic correlation, a LDA + DMFT calculation yields the weakly correlated LDA results, a strong…

Condensed Matter::Quantum GasesCondensed matter physicsHubbard modelElectronic correlationChemistryMott insulatorQuantum Monte CarloCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuasiparticleCondensed Matter::Strongly Correlated ElectronsStrongly correlated materialddc:530Metal–insulator transitionLocal-density approximation
researchProduct

Colossal Density-Driven Resistance Response in the Negative Charge Transfer Insulator MnS2

2021

A reversible density driven insulator to metal to insulator transition in high-spin MnS_{2} is experimentally observed, leading with a colossal electrical resistance drop of 10^{8}  Ω by 12 GPa. Density functional theory simulations reveal the metallization to be unexpectedly driven by previously unoccupied S_{2}^{2-} σ_{3p}^{*} antibonding states crossing the Fermi level. This is a unique variant of the charge transfer insulator to metal transition for negative charge transfer insulators having anions with an unsaturated valence. By 36 GPa the emergence of the low-spin insulating arsenopyrite (P2_{1}/c) is confirmed, and the bulk metallicity is broken with the system returning to an insula…

Condensed Matter::Quantum GasesMaterials scienceValence (chemistry)Condensed matter physicsFermi levelGeneral Physics and AstronomyInsulator (electricity)Charge (physics)Antibonding molecular orbitalMetalCondensed Matter::Materials Sciencesymbols.namesakeElectrical resistance and conductancevisual_artsymbolsvisual_art.visual_art_mediumCondensed Matter::Strongly Correlated ElectronsDensity functional theoryPhysical Review Letters
researchProduct

Probing number squeezing of ultracold atoms across the superfluid-Mott insulator transition.

2005

The evolution of on-site number fluctuations of ultracold atoms in optical lattices is experimentally investigated by monitoring the suppression of spin-changing collisions across the superfluid-Mott insulator transition. For low atom numbers, corresponding to an average filling factor close to unity, large on-site number fluctuations are necessary for spin-changing collisions to occur. The continuous suppression of spin-changing collisions is thus a direct evidence for the emergence of number-squeezed states. In the Mott insulator regime, we find that spin-changing collisions are suppressed until a threshold atom number, consistent with the number where a Mott plateau with doubly-occupied …

Condensed Matter::Quantum GasesPhysicsCondensed matter physicsFilling factorMott insulatorFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmaslaw.inventionCondensed Matter - Other Condensed MatterSuperfluiditylawUltracold atom[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesAtomCondensed Matter::Strongly Correlated ElectronsAtomic number010306 general physicsBose–Einstein condensateOther Condensed Matter (cond-mat.other)Spin-½Physical review letters
researchProduct