Search results for "INTEGRIN"

showing 10 items of 286 documents

Structure of three tandem filamin domains reveals auto-inhibition of ligand binding

2007

Human filamins are large actin-crosslinking proteins composed of an N-terminal actin-binding domain followed by 24 Ig-like domains (IgFLNs), which interact with numerous transmembrane receptors and cytosolic signaling proteins. Here we report the 2.5 A resolution structure of a three-domain fragment of human filamin A (IgFLNa19-21). The structure reveals an unexpected domain arrangement, with IgFLNa20 partially unfolded bringing IgFLNa21 into close proximity to IgFLNa19. Notably the N-terminus of IgFLNa20 forms a beta-strand that associates with the CD face of IgFLNa21 and occupies the binding site for integrin adhesion receptors. Disruption of this IgFLNa20-IgFLNa21 interaction enhances fi…

Models MolecularIntegrinsanimal structuresintegrinFilaminsIntegrinmacromolecular substancesPlasma protein bindingLigandsFilaminBiochemistryArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesFilamin bindingContractile ProteinsHumansBinding siteCell adhesionCytoskeletonMolecular BiologyX-ray crystallography030304 developmental biologyIntegrin binding0303 health sciencesGeneral Immunology and MicrobiologybiologyGeneral NeuroscienceMicrofilament Proteins030302 biochemistry & molecular biologycell adhesioncytoskeletonfilaminProtein Structure TertiaryCell biologybiology.proteinProtein BindingThe EMBO Journal
researchProduct

Evolution of Snake Venom Disintegrins by Positive Darwinian Selection

2008

PII-disintegrins, cysteine-rich polypeptides broadly distributed in the venoms of geographically diverse species of vipers and rattlesnakes, antagonize the adhesive functions of beta(1) and beta(3) integrin receptors. PII-disintegrins evolved in Viperidae by neofunctionalization of disintegrin-like domains of duplicated PIII-snake venom hemorrhagic metalloproteinase (SVMP) genes recruited into the venom proteome before the radiation of the advanced snakes. Minimization of the gene (loss of introns and coding regions) and the protein structures (successive loss of disulfide bonds) underpins the postduplication divergence of disintegrins. However, little is known about the underlying genetic …

Models MolecularProtein ConformationDisintegrinsMolecular Sequence DataEvolution MolecularNegative selectionPhylogeneticsMolecular evolutionViperidaeGeneticsDisintegrinAnimalsAmino Acid SequenceSelection GeneticMolecular BiologyGenePhylogenyEcology Evolution Behavior and SystematicsGeneticsEvolution of snake venomBinding SitesbiologyPhylogenetic treeMultigene Familybiology.proteinNeofunctionalizationProtein MultimerizationSnake VenomsMolecular Biology and Evolution
researchProduct

NMR Solution Structure of the Non-RGD Disintegrin Obtustatin

2003

The solution structure of obtustatin, a novel non-RGD disintegrin of 41 residues isolated from Vipera lebetina obtusa venom, and a potent and selective inhibitor of the adhesion of integrin alpha(1)beta(1) to collagen IV, has been determined by two-dimensional nuclear magnetic resonance. Almost the whole set of chemical shifts for 1H, 13C and 15N were assigned at natural abundance from 2D homonuclear and heteronuclear 500 MHz, 600 MHz and 800 MHz spectra at pH 3.0 recorded at 298 K and 303 K. Final structural constraints consisted of 302 non-redundant NOE (95 long-range, 60 medium, 91 sequential and 56 intra-residue), four disulfide bond distances, five chi1 dihedral angles and four hydroge…

Models MolecularProtein ConformationStereochemistryDisintegrinsMolecular Sequence DataStatic ElectricityViper VenomsDihedral angleCrystallography X-RayStructural BiologyDisintegrinAnimalsAmino Acid SequenceNuclear Magnetic Resonance BiomolecularMolecular BiologyProtein secondary structureConformational isomerismRGD motifMolecular StructureSequence Homology Amino AcidbiologyHydrogen bondChemistryCircular DichroismChemical shiftHydrogen BondingHydrogen-Ion ConcentrationSolutionsKineticsHeteronuclear moleculebiology.proteinOligopeptidesJournal of Molecular Biology
researchProduct

Jararhagin-derived RKKH Peptides Induce Structural Changes in α1I Domain of Human Integrin α1β1

2003

Integrin alpha(1)beta(1) is one of four collagen-binding integrins in humans. Collagens bind to the alphaI domain and in the case of alpha(2)I collagen binding is competitively inhibited by peptides containing the RKKH sequence and derived from the metalloproteinase jararhagin of snake venom from Bothrops jararaca. In alpha(2)I, these peptides bind near the metal ion-dependent adhesion site (MIDAS), where a collagen (I)-like peptide is known to bind; magnesium is required for binding. Published structures of the ligand-bound "open" conformation of alpha(2)I differs significantly from the "closed" conformation seen in the structure of apo-alpha(2)I near MIDAS. Here we show that two peptides,…

Models MolecularProtein ConformationStereochemistryIntegrinAlpha (ethology)PeptideCrystallography X-RayBinding CompetitiveBiochemistryCollagen Type IProtein Structure SecondaryIntegrin alpha1beta1Protein structureCrotalid VenomsHumansMagnesiumAmino Acid SequenceBinding siteMolecular BiologyPeptide sequenceFluorescent Dyeschemistry.chemical_classificationBinding SitesCalorimetry Differential ScanningMolecular StructurebiologyMetalloendopeptidasesCell BiologyPeptide FragmentsRecombinant ProteinsSpectrometry FluorescencechemistryJararhaginHelixbiology.proteinCrystallizationJournal of Biological Chemistry
researchProduct

Molecular mechanism of α2β1 integrin interaction with human echovirus 1

2009

Conformational activation increases the affinity of integrins to their ligands. On ligand binding, further changes in integrin conformation elicit cellular signalling. Unlike any of the natural ligands of alpha2beta1 integrin, human echovirus 1 (EV1) seemed to bind more avidly a 'closed' than an activated 'open' form of the alpha2I domain. Furthermore, a mutation E336A in the alpha2 subunit, which inactivated alpha2beta1 as a collagen receptor, enhanced alpha2beta1 binding to EV1. Thus, EV1 seems to recognize an inactive integrin, and not even the virus binding could trigger the conformational activation of alpha2beta1. This was supported by the fact that the integrin clustering by EV1 did …

Models MolecularProtein Conformationmedia_common.quotation_subjectIntegrinCHO CellsIn Vitro TechniquesBiologyp38 Mitogen-Activated Protein KinasesCD49cArticleGeneral Biochemistry Genetics and Molecular BiologyCell LineCollagen receptorCricetulusCricetinaeChlorocebus aethiopsAnimalsHumansBinding siteInternalizationMolecular Biologymedia_commonBinding SitesGeneral Immunology and MicrobiologyGeneral NeuroscienceRecombinant ProteinsEnterovirus B HumanProtein Structure TertiaryCell biologyAmino Acid SubstitutionIntegrin alpha MBiochemistryMutagenesis Site-Directedbiology.proteinReceptors VirusIntegrin beta 6Integrin alpha2beta1Signal transductionSignal TransductionThe EMBO Journal
researchProduct

The regulation mechanism for the auto-inhibition of binding of human filamin A to integrin.

2009

The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Human filamins are large actin cross-linking proteins that connect integrins to the cytoskeleton. Filamin binding to the cytoplasmic tail of beta integrins has been shown to prevent integrin activation in cells, which is important for controlling cell adhesion and migration. The molecular-level mechanism for filamin binding to integrin has been unclear, however, as it was recently demonstrated that filamin undergoes intramolecular auto-inhibition of integrin binding. In this study, using steered molecular dynamics simulations, we f…

Models MolecularProtein Foldinganimal structuresIntegrin beta ChainsFilaminsmacromolecular substancesBiologyFilaminCD49cCollagen receptorFilamin bindingPhosphoserineContractile ProteinsStructural BiologyHumansPhosphorylationMolecular BiologyIntegrin bindingBinding SitesMicrofilament ProteinsActin cytoskeletonCell biologybody regionsIntegrin alpha Mbiology.proteinIntegrin beta 6Stress MechanicalPeptidesProtein BindingJournal of molecular biology
researchProduct

BB0172, a Borrelia burgdorferi Outer Membrane Protein That Binds Integrin Α3Β1

2013

ABSTRACT Lyme disease is a multisystemic disorder caused by Borrelia burgdorferi infection. Upon infection, some B. burgdorferi genes are upregulated, including members of the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) protein family, which facilitate B. burgdorferi adherence to extracellular matrix components of the host. Comparative genome analysis has revealed a new family of B. burgdorferi proteins containing the von Willebrand factor A (vWFA) domain. In the present study, we characterized the expression and membrane association of the vWFA domain-containing protein BB0172 by using in vitro transcription/translation systems in the presence of microsomal …

Models MolecularProtein familyMolecular Sequence DataIntegrinBiologyModels BiologicalMicrobiologyBiotecnologiaMicrobiologyAmino Acid SequenceBorrelia burgdorferiAdhesins BacterialMolecular BiologyIntegrin alpha3beta1Borrelia Burgdorferi InfectionProteïnes de membranaIntegrin alpha3beta1Articlesbiology.organism_classificationCell biologyBacterial adhesinBorrelia burgdorferibiology.proteinMSCRAMMBacterial outer membraneSequence AlignmentBacterial Outer Membrane ProteinsProtein Binding
researchProduct

cDNA Cloning and Functional Expression of Jerdostatin, a Novel RTS-disintegrin from Trimeresurus jerdonii and a Specific Antagonist of the α1β1 Integ…

2005

Jerdostatin represents a novel RTS-containing short disintegrin cloned by reverse transcriptase-PCR from the venom gland mRNA of the Chinese Jerdons pit viper Trimeresurus jerdonii. The jerdostatins precursor cDNA contained a 333-bp open reading frame encoding a signal peptide, a pre-peptide, and a 43-amino acid disintegrin domain, whose amino acid sequence displayed 80% identity with that of the KTS-disintegrins obtustatin and viperistatin. The jerdostatin cDNA structure represents the first complete open reading frame of a short disintegrin and points to the emergence of jerdostatin from a short-coding gene. The different residues between jerdostatin and obtustatin/viperistatin are segreg…

Models MolecularSignal peptideProtein FoldingDNA ComplementaryMagnetic Resonance SpectroscopyProtein ConformationDisintegrinsMolecular Sequence DataIntegrinMutantGene ExpressionPeptide MappingBiochemistryIntegrin alpha1beta1Open Reading FramesExocrine GlandsComplementary DNACrotalid VenomsDisintegrinAnimalsTrimeresurusTrypsinAmino Acid SequenceCysteineDisulfidesCloning MolecularMolecular BiologyPeptide sequenceMessenger RNABase SequencebiologyCell BiologyMolecular biologyRecombinant ProteinsOpen reading frameMutagenesis Site-Directedbiology.proteinJournal of Biological Chemistry
researchProduct

β2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding

2008

AbstractLeukocyte integrins of the β2 family are essential for immune cell-cell adhesion. In activated cells, β2 integrins are phosphorylated on the cytoplasmic Thr758, leading to 14-3-3 protein recruitment to the β2 integrin. The mutation of this phosphorylation site impairs cell adhesion, actin reorganization, and cell spreading. Thr758 is contained in a Thr triplet of β2 that also mediates binding to filamin. Here, we investigated the binding of filamin, talin, and 14-3-3 proteins to phosphorylated and unphosphorylated β2 integrins by biochemical methods and x-ray crystallography. 14-3-3 proteins bound only to the phosphorylated integrin cytoplasmic peptide, with a high affinity (Kd, 261…

Models MolecularTalinThreonineanimal structuresFilaminsT-LymphocytesStatic ElectricityImmunologyIntegrinCD18macromolecular substancesPlasma protein bindingIn Vitro TechniquesFilaminBiochemistryJurkat Cells03 medical and health sciencesFilamin bindingContractile Proteins0302 clinical medicineCell AdhesionHumansProtein Interaction Domains and MotifsPhosphorylationCell adhesion030304 developmental biology0303 health sciencesBinding SitesbiologyChemistryMicrofilament ProteinsCell BiologyHematologyIntercellular Adhesion Molecule-1Talin bindingRecombinant ProteinsCell biology14-3-3 ProteinsAmino Acid SubstitutionCD18 AntigensMultiprotein Complexes030220 oncology & carcinogenesisbiology.proteinPhosphorylationProtein BindingBlood
researchProduct

The molecular basis of filamin binding to integrins and competition with talin.

2006

The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Filamins are large, actin-crosslinking proteins that connect multiple transmembrane and signaling proteins to the cytoskeleton. Here, we describe the high-resolution structure of an interface between filamin A and an integrin adhesion receptor. When bound, the integrin beta cytoplasmic tail forms an extended beta strand that interacts with beta strands C and D of the filamin immunoglobulin-like domain (IgFLN) 21. This interface is common to many integrins, and we suggest it is a prototype for other IgFLN domain interactions. Notabl…

Models MolecularTalinanimal structuresIntegrin beta ChainsProtein ConformationFilaminsRecombinant Fusion ProteinsIntegrinMolecular Sequence Datamacromolecular substancesPlasma protein bindingFilaminCrystallography X-RayFilamin bindingMiceContractile ProteinsFLNAAnimalsAmino Acid SequenceMolecular BiologyNuclear Magnetic Resonance BiomolecularBinding SitesbiologySequence Homology Amino AcidCalpainMicrofilament ProteinsReproducibility of ResultsCell BiologyActin cytoskeletonCell biologyProtein Structure Tertiarybody regionsIntegrin alpha Mbiology.proteinNIH 3T3 CellsIntegrin beta 6Protein BindingMolecular cell
researchProduct