Search results for "INTERFEROMETERS"
showing 9 items of 9 documents
GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences
2018
The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…
First M87 Event Horizon Telescope Results. II. Array and Instrumentation
2019
The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ~1.3 mm, EHT angular resolution (λ/D) is ~25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of th…
Telecom-compatible, affordable and scalable quantum technologies
2022
The realistic implementation of quantum architectures relies on the development of scalable, resource-efficient platforms that are compatible with CMOS technologies as well as fiber networks. This work demonstrates novel schemes utilized for time-/frequency-bin entanglement generation and processing by leveraging existing telecommunications and integrated photonics infrastructures.
Arbitrary Phase Access for Stable Fiber Interferometers
2021
Well-controlled yet practical systems that give access to interference effects are critical for established and new functionalities in ultrafast signal processing, quantum photonics, optical coherence characterization, etc. Optical fiber systems constitute a central platform for such technologies. However, harnessing optical interference in a versatile and stable manner remains technologically costly and challenging. Here, degrees of freedom native to optical fibers, i.e., polarization and frequency, are used to demonstrate an easily deployable technique for the retrieval and stabilization of the relative phase in fiber interferometric systems. The scheme gives access (without intricate dev…
Experimental generalized quantum suppression law in Sylvester interferometers
2017
Photonic interference is a key quantum resource for optical quantum computation, and in particular for so-called boson sampling machines. In interferometers with certain symmetries, genuine multiphoton quantum interference effectively suppresses certain sets of events, as in the original Hong-Ou-Mandel effect. Recently, it was shown that some classical and semi-classical models could be ruled out by identifying such suppressions in Fourier interferometers. Here we propose a suppression law suitable for random-input experiments in multimode Sylvester interferometers, and verify it experimentally using 4- and 8-mode integrated interferometers. The observed suppression is stronger than what is…
Performance of electro-optical plasmonic ring resonators at telecom wavelengths
2012
International audience; In this work we report on the characteristics of an electro-optical dielectric-loaded surface plasmon polariton waveguide ring resonator. By doping the dielectric host matrix with an electro-optical material and designing an appropriate set of planar electrodes, we measured a 16% relative change of transmission upon application of a controlled electric field. We have analyzed the temporal response of the device and conclude that electrostriction of the host matrix is playing a dominating role in the transmission response.
Tunable Dual-Wavelength Thulium-Doped Fiber Laser Based on FBGs and a Hi-Bi FOLM
2017
A tunable dual-wavelength thulium doped fiber laser is demonstrated experimentally. For the first time for the 2- $\mu \text{m}$ wavelength band we propose the independent tuning of the generated laser lines based on fiber Bragg gratings and the use of a Hi-Bi fiber optic loop mirror for the fine adjustment of the cavity losses to obtain stable dual-wavelength operation. Dual-wavelength laser generation with the laser lines separation in the range from 0.3 to 6.5 nm is obtained. The laser emission exhibits an optical signal-to-noise ratio better than 56 dB. Improved stability with output power fluctuations less than 1 dB is observed in dual-wavelength generation with equal power of lines.
Coherence loss in phase-referenced VLBI observations
2010
Context. Phase-referencing is a standard calibration technique in radio interferometry, particularly suited for the detection of weak sources close to the sensitivity limits of the interferometers. However, effects from a changing atmosphere and inaccuracies in the correlator model may affect the phase-referenced images, and lead to wrong estimates of source flux densities and positions. A systematic observational study of signal decoherence in phase-referencing and its effects in the image plane has not been performed yet. Aims. We systematically studied how the signal coherence in Very-Long-Baseline-Interferometry (VLBI) observations is affected by a phase-reference calibration at differe…
Unambiguous phase retrieval in fiber-based interferometers
2020
A scheme for fiber interferometers, exploiting frequency-multiplexing in orthogonal fiber polarization modes, enables unambiguous phase retrieval. This allows for arbitrary phase tuning, providing a precise tool for time-bin qubit manipulation.