6533b826fe1ef96bd1283d7d

RESEARCH PRODUCT

Arbitrary Phase Access for Stable Fiber Interferometers

David J. MossBenjamin MaclellanMichael KuesMichael KuesBennet FischerBrent E. LittlePiotr RoztockiAlfonso Carmelo CinoStefania SciaraStefania SciaraChristian ReimerMehedi IslamRobin HelstenRoberto MorandottiRoberto MorandottiSai T. ChuYoann Jestin

subject

Signal processingPhase (waves)Physics::Opticsquantum photonics01 natural sciencesDegrees of freedom (mechanics)Quantum entanglement010309 opticsOpticsinterferometers0103 physical sciencesAstronomical interferometerddc:530Optical fibersFiber interferometersFiber010306 general physicsOptical reference signalsPhysicsPhotonsUltrafast signal processingInterference effectsbusiness.industryOptical fiber systemsReference signalsSettore ING-INF/02 - Campi ElettromagneticiCondensed Matter PhysicsParticle beamsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSingle-photon detectorscoherent signal processingDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikinterferometers coherent signal processing quantum photonicsbusinessInterferometric system

description

Well-controlled yet practical systems that give access to interference effects are critical for established and new functionalities in ultrafast signal processing, quantum photonics, optical coherence characterization, etc. Optical fiber systems constitute a central platform for such technologies. However, harnessing optical interference in a versatile and stable manner remains technologically costly and challenging. Here, degrees of freedom native to optical fibers, i.e., polarization and frequency, are used to demonstrate an easily deployable technique for the retrieval and stabilization of the relative phase in fiber interferometric systems. The scheme gives access (without intricate device isolation) to <1.3 × 10−3 π rad error signal Allan deviation across 1 ms to 1.2 h integration times for all tested phases, ranging from 0 to 2π. More importantly, the phase-independence of this stability is shown across the full 2π range, granting access to arbitrary phase settings, central for, e.g., performing quantum projection measurements and coherent pulse recombination. Furthermore, the scheme is characterized with attenuated optical reference signals and single-photon detectors, and extended functionality is demonstrated through the use of pulsed reference signals (allowing time-multiplexing of both main and reference signals). Finally, the scheme is used to demonstrate radiofrequency-controlled interference of high-dimensional time-bin entangled states. © 2021 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH

https://doi.org/10.1002/lpor.202000524