0000000000144210

AUTHOR

Mehedi Islam

On-chip frequency combs and telecommunications signal processing meet quantum optics

Entangled optical quantum states are essential towards solving questions in fundamental physics and are at the heart of applications in quantum information science. For advancing the research and development of quantum technologies, practical access to the generation and manipulation of photon states carrying significant quantum resources is required. Recently, integrated photonics has become a leading platform for the compact and cost-efficient generation and processing of optical quantum states. Despite significant advances, most on-chip nonclassical light sources are still limited to basic bi-photon systems formed by two-dimensional states (i.e., qubits). An interesting approach bearing …

research product

Removing phase ambiguity in fiber-based interferometers for coherent time-bin operations

Time is a practical and robust degree of freedom for the encoding of quantum information. Qubits encoded in so-called 'time-bins', allowing a discrete superposition of two potential arrival times, have their entanglement preserved even over long propagation distances in standard fiber networks [1]. Time has also been used for the preparation of more complex quantum systems, such as hyper-entangled and cluster states [2]. These qualities put time-bin encoding at the center of applications ranging from quantum state preparation through to quantum communications and information processing. One of the hallmarks of the scheme is that a nonlinear element has to be pumped with phase-coherent doubl…

research product

On-chip Generation, Coherent Control and Processing of Complex Entangled Photon States

We demonstrate the on-chip generation of time-bin entangled two- and multi-photon qubit states, as well as high-dimensional frequency-entangled photon pairs. Combining time and frequency entanglement, we generate high-dimensional optical cluster states and implement proof-of-concept high-dimensional one-way quantum computing. This, by using standard, fiber-based telecommunication components.

research product

Kerr Combs and Telecommunications Components for the Generation and High-Dimensional Quantum Processing of d-Level Cluster States

Large and complex optical quantum states are a key resource for fundamental science and applications such as quantum communications, information processing, and metrology. In this context, cluster states are a particularly important class because they enable the realization of universal quantum computers by means of the so-called ‘one-way’ scheme, where processing operations are performed through measurements on the state. While two-level (i.e. qubit) cluster states have been realized thus far, further boosting this computational resource by increasing the number of particles comes at the price of significantly reduced coherence time and detection rates, as well as increased sensitivity to …

research product

High-dimensional one-way quantum processing implemented on d-level cluster states

Taking advantage of quantum mechanics for executing computational tasks faster than classical computers1 or performing measurements with precision exceeding the classical limit2,3 requires the generation of specific large and complex quantum states. In this context, cluster states4 are particularly interesting because they can enable the realization of universal quantum computers by means of a ‘one-way’ scheme5, where processing is performed through measurements6. The generation of cluster states based on sub-systems that have more than two dimensions, d-level cluster states, provides increased quantum resources while keeping the number of parties constant7, and also enables novel algorithm…

research product

High-dimensional one-way quantum processing enabled by optical d-level cluster states

By introducing and modifying two-photon hyper-entangled states in the time-frequency domain using an on-chip micro-cavity, we succeed in generating high-dimensional cluster states, demonstrate d-level measurement-based quantum processing and show the state’s higher noise tolerance.

research product

Arbitrary Phase Access for Stable Fiber Interferometers

Well-controlled yet practical systems that give access to interference effects are critical for established and new functionalities in ultrafast signal processing, quantum photonics, optical coherence characterization, etc. Optical fiber systems constitute a central platform for such technologies. However, harnessing optical interference in a versatile and stable manner remains technologically costly and challenging. Here, degrees of freedom native to optical fibers, i.e., polarization and frequency, are used to demonstrate an easily deployable technique for the retrieval and stabilization of the relative phase in fiber interferometric systems. The scheme gives access (without intricate dev…

research product

Framework for complex quantum state generation and coherent control based on on-chip frequency combs

Integrated frequency combs introduce a scalable framework for the generation and manipulation of complex quantum states (including multi-photon and high-dimensional states), using only standard silicon chip and fiber telecommunications components.

research product

Hyper-Entanglement in Time and Frequency

Hyper-entanglement, i.e. entanglement in more than one degree of freedom, enables a multiplicative increase in Hilbert space size. Such systems can be treated as multi-partite even though the number of state particles is not increased, making them highly attractive for applications in high-capacity quantum communications and information processing [1]. Until now, such states have been realized only using combinations of fully independent degrees of freedom, described by commuting operators, such as polarization and optical paths. Time and frequency, in turn, are linked and described by non-commuting operators. Here, using two discrete forms of energy-time entanglement we demonstrate that ti…

research product

Optical d-level frequency-time-based cluster states

Cluster states, a specific class of multi-partite entangled states, are of particular importance for quantum science, as such systems are equivalent to the realization of one-way (or measurement-based) quantum computers [1]. In this scheme, algorithms are implemented through high-fidelity measurements on the parties of the state [2]. While two-level (i.e. qubit) cluster states have been realized so far, increasing the number of particles to boost the computational resource comes at the price of significantly reduced coherence time and detection rates, as well as increased sensitivity to noise, restricting the realization of discrete cluster states to a record of eight qubits. In contrast, t…

research product

Complex quantum state generation and coherent control based on integrated frequency combs

The investigation of integrated frequency comb sources characterized by equidistant spectral modes was initially driven by considerations towards classical applications, seeking a more practical and miniaturized way to generate stable broadband sources of light. Recently, in the context of scaling the complexity of optical quantum circuits, these on-chip approaches have provided a new framework to address the challenges associated with non-classical state generation and manipulation. For example, multi-photon and high-dimensional states were to date either inaccessible, lacked scalability, or were difficult to manipulate, requiring elaborate approaches. The emerging field of quantum frequen…

research product

Fiber Interferometers for Time-domain Quantum Optics

A novel method for stabilizing fiber interferometers based on frequency- and polarization-multiplexing enables unambiguous phase retrieval, long-term stability, and phase-independent performance. These capabilities allow for precise manipulation of time-bin quantum states in a low-complexity setup.

research product

Unambiguous phase retrieval in fiber-based interferometers

A scheme for fiber interferometers, exploiting frequency-multiplexing in orthogonal fiber polarization modes, enables unambiguous phase retrieval. This allows for arbitrary phase tuning, providing a precise tool for time-bin qubit manipulation.

research product

Designing time and frequency entanglement for generation of high-dimensional photon cluster states

The development of quantum technologies for quantum information science demands the realization and precise control of complex (multipartite and high dimensional) entangled systems on practical and scalable platforms. Quantum frequency combs (QFCs) generated via spontaneous four-wave mixing in integrated microring resonators represent a powerful tool towards this goal. They enable the generation of complex photon states within a single spatial mode as well as their manipulation using standard fiber-based telecommunication components. Here, we review recent progress in the development of QFCs, with a focus on our results that highlight their importance for the realization of complex quantum …

research product

On-chip quantum frequency combs for complex photon state generation (Conference Presentation)

A key challenge in today’s quantum science is the realization of large-scale complex non-classical systems to enable e.g. ultra-secure communications, quantum-enhanced measurements, and computations faster than classical approaches. Optical frequency combs represent a powerful approach towards this, since they provide a very high number of temporal and frequency modes which can result in large-scale quantum systems. Here, we discuss the recent progress on the realization of integrated quantum frequency combs and reveal how their use in combination with on-chip and fiber-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capa…

research product