Search results for "ION SOURCES"
showing 10 items of 61 documents
Power efficiency improvements with the radio frequency H− ion source
2016
CW 13.56 MHz radio frequency-driven H− ion source is under development at the University of Jyväskylä for replacing an existing filament-driven ion source at the MCC30/15 cyclotron. Previously, production of 1 mA H− beam, which is the target intensity of the ion source, has been reported at 3 kW of RF power. The original ion source front plate with an adjustable electromagnet based filter field has been replaced with a new front plate with permanent magnet filter field. The new structure is more open and enables a higher flux of ro-vibrationally excited molecules towards the plasma electrode and provides a better control of the potential near the extraction due to a stronger separation of t…
Experimental evidence on microwave induced electron losses from ECRIS plasma
2018
The balance between warm and hot (>1 keV) electron density and their losses from the magnetic confinement system of an Electron Cyclotron Resonance Ion Source (ECRIS) plasma is considered to be one of the main factors determining the rate of the high charge state ion production. One of the key loss channels for heated electrons is thought to be induced by the injected microwaves. While this loss mechanism, referred to as rf-induced pitch angle scattering, has been studied theoretically and with computational tools, direct experimental evidence of its significance in minimum-B ECRIS plasmas remains limited. In this work, experimental evidence of microwave induced electron losses in the axial…
Influence of axial mirror ratios on the kinetic instability threshold in electron cyclotron resonance ion source plasma
2022
International audience; Electron Cyclotron Resonance (ECR) ion source plasmas are prone to kinetic instabilities. The onset of the instabilities manifests as emission of microwaves, bursts of electrons expelled from the plasma volume, and the collapse of the extracted highly charged ion (HCI) currents. Consequently, the instabilities limit the HCI performance of ECR ion sources by limiting the parameter space available for ion source optimization. Previous studies have shown that the transition from stable to unstable plasma regime is strongly influenced by the magnetic field structure, especially the minimum field value inside the magnetic trap (Bmin). This work focuses to study the role o…
Ion beam intensity and phase space measurement techniques for ion sources.
2022
Ion sources produce beams used in accelerators and other applications. Both development and use of ion sources need beam diagnostics to probe the plasma processes and beam formation for optimization purposes and to produce beam parameters needed for transport tuning. These diagnostics include beam intensity measurements usually carried out with Faraday cups or inductive pickups, magnetic separation, profile measurements with scintillation screens and wires, and phase space measurements with different types of emittance scanners. peerReviewed
Quasi-periodical kinetic instabilities in minimum-B confined plasma
2022
We present the results of an experimental investigation of quasi-periodical kinetic instabilities exhibited by magnetically confined electron cyclotron resonance heated plasmas. The instabilities were detected by measuring plasma microwave emission, electron losses, and wall bremsstrahlung. The instabilities were found to be grouped into fast sequences of periodic plasma losses, separated by ∼100 µs between the bursts, followed by 1–10 ms quiescent periods before the next event. Increasing the plasma energy content by adjusting the plasma heating parameters, in particular the magnetic field strength, makes the instabilities more chaotic in the time domain. Statistical analysis reveals that …
Recent progress on the superconducting ion source VENUS.
2012
The 28 GHz Ion Source VENUS (versatile ECR for nuclear science) is back in operation after the superconducting sextupole leads were repaired and a fourth cryocooler was added. VENUS serves as an R&D device to explore the limits of electron cyclotron resonance source performance at 28 GHz with its 10 kW gryotron and optimum magnetic fields and as an ion source to increase the capabilities of the 88-Inch Cyclotron both for nuclear physics research and applications. The development and testing of ovens and sputtering techniques cover a wide range of applications. Recent experiments on bismuth demonstrated stable operation at 300 eμA of Bi31+, which is in the intensity range of interest for hig…
The electron cyclotron resonance ion source with arc-shaped coils concept
2012
The main limitation to further improve the performance of ECR ion sources is set by the magnet technology related to the multipole magnet field used for the closed minimum-B structure. The JYFL ion source group has sought different approaches to improve the strength of the minimum-B structure required for the production of highly charged ion beams. It was found out that such a configuration can be realized with arc shaped coils. The first prototype, electron cyclotron resonance ion source with arc-shaped coils (ARC-ECRIS), was constructed and tested at JYFL in 2006. It was confirmed that such an ion source can be used for the production of highly charged ion beams. Regardless of several cos…
The relationship between visible light emission and species fraction of the hydrogen ion beams extracted from 2.45 GHz microwave discharge.
2015
The relationship between Balmer-α and Fulcher-band emissions with extracted H + , H + 2 , and H + 3 ions is demonstrated for a 2.45 GHz microwave discharge. Ion mass spectra and optical measurements of Balmer-α and Fulcher-band emissions have been obtained with a Wien Filter having an optical viewport on the plasma chamber axis. The beam of approximately 1 mA is analyzed for different plasma conditions simultaneously with the measurement of light emissions both with temporal resolution. The use of visible light emissions as a valuable diagnostic tool for monitoring the species fraction of the extracted beams is proposed. peerReviewed
Photoelectron emission experiments with ECR-driven multi-dipolar negative ion plasma source
2017
Photoelectron emission measurements have been performed using a 2.45 GHz ECR-driven multi-dipolar plasma source in a low pressure hydrogen discharge. Photoelectron currents induced by light emitted from ECR zone and H− production region are measured from Al, Cu, Mo, Ta, and stainless steel (SAE 304) surfaces as a function of microwave power and neutral hydrogen pressure. The total photoelectron current from the plasma chamber wall is estimated to reach values up to 1 A for 900 W of injected microwave power. It is concluded that the volumetric photon emission rate in wavelength range relevant for photoelectron emission is a few times higher in arc discharge. peerReviewed
VUV emission spectroscopy combined with H- density measurements in the ion source Prometheus I
2016
“Prometheus I” is a volume H− negative ion source, driven by a network of dipolar electron cyclotron resonance (ECR; 2.45 GHz) modules. The vacuum-ultraviolet (VUV) emission spectrum of low-temperature hydrogen plasmas may be related to molecular and atomic processes involved directly or indirectly in the production of negative ions. In this work, VUV spectroscopy has been performed in the above source, Prometheus I, both in the ECR zones and the bulk (far from ECR zones and surfaces) plasma. The acquired VUV spectra are correlated with the negative ion densities, as measured by means of laser photodetachment, and the possible mechanisms of negative ion production are considered. The well-e…